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Abstract of Dissertation Presented to the Graduate School 
of the University of Florida in Partial Fulfillment of the 

Requirements for the Degree of Doctor of Philosophy 

NONSTATIONARITY, NONLINEAR DEPENDENCE, AND PREDICTION: 
AN APPLICATION TO THE TREASURY BILL FUTURES MARKET 

By 

Jack Praschnik 

August 1991 

Chairperson: Professor G.S. Maddala 
Major Department: Economics 

This study describes the time series properties of U.S. 

Treasury Bill futures prices with special emphasis on unit 

root nonstationarity, nonlinear dependence, and prediction. 

Although most research of financial markets assumes that 

market prices follow a specific martingale process, namely the 

random walk, recently researchers have begun to question this 

assumption. This assumption implies futures prices must 

contain a unit root, yet many studies are inconclusive or 

contradictory on this point. In chapter 2 several tests for 

nonstationarity are applied and it is shown that futures 

prices undoubtedly contain a unit root. 

A more formal analysis of the random walk hypothesis is 

conducted in chapter 3 by looking at both linear and nonlinear 

dependence of first differences of prices. Nonparametric and 

parametric tests of linear dependence are conducted and the 

results indicate that the data contains no significant linear 
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dependence. However, when tests for nonlinear dependence were 

conducted, the results from every test indicated the nonlinear 

dependence. 

Based on the results from chapter 3, chapter 4 estimates 

nonlinear models and uses them for prediction. In this 

chapter much is learned. First, some nonlinear models are 

excluded simply by their poor estimation performance. Second, 

when comparing the models1 predictive performance to the 

random walk, it becomes clear that the nonlinearities of the 

data are exploitable. Two of four models are able to perform 

better than the random walk especially in shorter horizons. 

Third, the best nonlinear model is chosen after comparing the 

predictions of all the nonlinear models against each other. 

It is shown that the bilinear model is the best of the 

nonlinear models. Finally, it is shown that the bilinear 

model outperforms the popular autoregressive, conditional, 

heteroskedastic (ARCH) model. 
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CHAPTER 1 
INTRODUCTION 

General Background 

The martingale process, i.e., a stochastic process in 

which the expected price in the next period equals the current 

price, has an established record in characterizing the random 

nature of futures prices. Samuelson (1965), assuming both 

perfect capital .markets and an instantaneous adjustment 

property, was the first to formally develop a model where 

futures prices are characterized by a specific martingale 

process known as the random walk. Since then, many authors 

have tested the random walk property by testing first 

differences for serial independence.1 The results, however, 

have been inconclusive. Rocca (1969) and Labys and Granger 

(1970) both concluded that the martingale process provides a 

good description of futures prices even though minor 

departures may be encountered. However, using both time and 

frequency domain tests, Cargill and Rausser (1972, 1975) 

1 Note that for a time series of the variable x to be a 
martingale process the only requirement is that E(xt+1)=xt and 
E(et)=0 where et=xt+1-xt. But for x to be a random walk process 
the residual et must also have the property that Cov (et, et+k) =0 
for all k. 

1 
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rejected the random walk hypothesis. Because previous time 

and frequency domain tests both assume that futures prices are 

normally distributed, Mann and Heifner (1976) used two 

nonparametric tests to test the random walk hypothesis. They 

also rejected the hypothesis after looking at prices for nine 

commodities over a twelve year span. 

In addition to studies of the residuals of price 

differences, tests for nonstationarity can also be employed to 

address the same question. Recall that a martingale process 

is a stochastic process in which the expected price in the 

next period equals the current price. Then if futures prices 

can be described by this type of process, they should at least 

contain a unit root in their autoregressive representation. 

Goldenberg (1989) finds a unit root in daily S&P 500 futures 

prices. In addition, Doukas (1990) found that futures prices 

for some commodities, namely soybeans, soy meal, and soy oil, 

contain a unit root. These papers give some validity to the 

martingale hypothesis, but by themselves cannot be conclusive. 

All of these studies of futures prices above have tried 

to investigate the martingale hypothesis or more specifically 

the random walk hypothesis by testing the existence of linear 

dependence. It is possible, however, that the random walk 

hypothesis may be violated by the existence of nonlinear 

dependence. Indirectly, some authors have addressed this 

possibility by showing that profitable trading rules may exist 

even when changes in futures prices are serially uncorrelated. 
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Leuthold (1972), in investigating the futures market for 

cattle, used filter rules to show that profitable trading 

rules existed for the period 1965-1970. In the same paper, he 

showed that these rules may exist even when spectral analysis 

indicates that price changes are random. Nonlinear dependence 

has been found in other financial data, but direct tests for 

nonlinear dependence in futures prices have not been 

conducted. 

Because nonlinear dependence has been found in the 

residuals of price changes in other financial markets, it 

seems useful to test for nonlinear dependence in futures 

markets. There are several models that are good candidates 

for financial data, but one family of models, the 

autoregressive, conditional heteroskedastic (ARCH) family, has 

become the most popular univariate time series model. The 

cause of this popularity is unclear. Other models are just as 

easy to apply and have an intuitive appeal that is as good or 

better. 

Purpose of the Study 

Because the random walk hypothesis and time series 

properties of futures prices are still a subject of debate, 

the present dissertation examines the statistical nature of 

futures prices in detail. As the title of the dissertation 

suggests, nonstationarity, nonlinear dependence, and 

prediction will be the focus of the analysis. Given the size 
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of the particular futures market chosen and the topics 

selected for discussion, the analysis will be sufficient to 

shed some light on the overall behavior of futures prices in 

financial markets. 

In the second chapter, the property of nonstationarity is 

examined by first discussing and then applying tests for 

nonstationarity to the futures contracts chosen. Four 

different tests are used and some are used with different lag 

structures to account for any serial correlation found in the 

residuals of the tests' regression equations. Before 

concluding that the data are stationary or nonstationary, 

however, the appropriate Dickey-Fuller model of the data is 

considered. This entails analyzing which first order 

autoregressive representation, i.e., with no constant, just a 

constant, or a constant and a trend term, is the one that fits 

the data best. Test results indicate that first differences 

of prices are covariance stationary and give us a necessary 

condition to further investigate the random walk hypothesis. 

Given the unanimous results from the tests for 

nonstationarity, the third chapter investigates the random 

walk hypothesis even further by applying parametric and 

nonparametric tests for linear dependence, a general test of 

dependence, and tests for nonlinear dependence to first 

differences of prices. As opposed to previous studies of 

futures prices, which used indirect tests for nonlinear 

dependence, direct tests for nonlinear dependence, which are 
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based on new time series techniques, are used in this chapter. 

Among the tests used, I am first to apply a very powerful test 

known as the Brock, Dechert, and Scheinkman (BDS) test. This 

BDS test is based on the correlation integral which is used in 

physics as a measure of clustering. Significant linear 

dependence is rejected by all of the tests, but nonlinear 

dependence appears in every data set. This result leaves the 

random walk hypothesis in question and points to the use of 

nonlinear models as the most appropriate class of models to 

describe futures price data. 

Modeling the data is taken up in the fourth chapter. 

Several nonlinear models are applied to the data, namely, an 

autoregressive, conditional heteroskedastic in mean (ARCH-M) 

model (Engle, Lilien, and Robins, 1987), a generalized 

autoregressive, conditional heteroskedastic in mean (GARCH-M) 

model (Bollerslev, 1986), a bilinear model (Granger and 

Andersen, 1978a), a time-varying parameter model, a time-

series segmentation model (Sclove, 1983), and the stochastic, 

segmented trends model (Hamilton, 1989). First, the models 

are estimated. Because the time-varying parameter and time 

series segmentation models do not fit this data, they are 

discarded. The remaining models are estimated and used for 

out-of-sample prediction by reserving the last 50 days of data 

for each contract. Using two criteria, the mean square error 

of prediction and fheil's U statistic, the models' predictions 

are first compared to the prediction for a standard 
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martingale, the random walk, and then compared to one another. 

The bilinear model predicts best and some conclusions are 

drawn as to the use of the family of ARCH models when modeling 

financial futures data. 

Data Description 

The data are daily settlement prices for 90-day U.S. 

Treasury Bill futures contracts. The contracts chosen for 

analysis in this dissertation were the five most recent 

contracts available at the start of my research. These 

contracts matured in third, sixth, ninth, and twelfth months 

of 1988 and the third month of 1989 and hereafter are referred 

to as contracts 88(3), 88(6), 88(9), 88(12), 89(3) 

respectively. After discarding the last month of trading for 

each contract to avoid dependencies caused by the convergence 

of futures prices to spot prices, there were approximately 4 50 

observations for each contract.2 

A simple reason that this particular futures market is 

chosen is that it is representative of all other financial 

futures markets, especially futures markets of other short-

term credit instruments, by the dollar amount of transactions 

and volume traded on the market on any given day. In 

addition, it is the largest domestically traded futures 

2 The first month of trading under contract 88(9) was 
characterized by dramatic upward and downward swings along 
with terribly low volumes of trading. For this reason this 
month of trading was also discarded to avoid any unexplainable 
dependencies that this behavior may cause to appear. 
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contract and is most often used as an indicator of future 

interest rates. 

To investigate the random walk hypothesis, first 

differences are used in all of the tests, i.e., et = Pt - Pt_!, 

where Pt is the daily settlement price in time period t. To 

get a feel for the data, table 1.1 provides the summary 

statistics for these changes. 

Table 1.1 

SUMMARY STATISTICS FOR DAILY PRICE CHANGE 
et = Pt - Pt_x 

Contracts 88 (3) 88(6) 88 (9) 88(12) 89 (3) 

N 476 434 409 472 462 
Mean .0027 -.0010 -.0028 -.0007 -.0028 
SD . 1107 .1121 .1073 .1038 . 1033 

Skewness 1.8789 . 6724 1 .5254 1.3058 1. 3720 
Kurtosis 9.9306 20 .7811 19 .8099 18.9414 20.9839 

Maximum 1. 06 1 .01 .99 .97 .98 
Minimum -.36 -.77 -.55 -.60 -.64 
T-stat . 0001 .0003 .00002 -.0002 -.0002 

N indicates the number of observations and the T-statistic is from an OLS regression of daily 

price changes on time. 

The skewness and kurtosis coefficients differ greatly 

from those found on a normal distribution (0 and 3 

respectively). In all of the samples, the density is skewed 

to the right and the size of the kurtosis coefficients 

indicates that the density is far more peaked around its 

center than the density of a normal random variable 

(leptokurtic). Note that if the density of price changes is 
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nonnormal, then satisfying simple tests for randomness will 

only indicate that et is uncorrelated over time. Without 

normality, statistical independence cannot be inferred from 

these results. 

In figures 1.1 through 1.5, the levels of futures prices 

for contracts 88(3) through 89(3) are graphed against time and 

in figures 1.6 through 1.10 price changes are graphed against 

time and presented in the same order. The levels of the data 

appear to be autocorrelated both negatively and positively 

over different periods of time. In addition, there seem to be 

long periods where futures prices move in one direction. 

Hence, the statistical models proposed by Sclove (1983) and/or 

Hamilton (1989) , which will be discussed in chapter 4, seem 

to be applicable. 

The changes in futures prices, on the surface, are less 

informative, although it appears that the data are bounded and 

linearly independent. In addition, a simple inspection of the 

way the amplitude changes over time may lead one to believe 

that the data could have been generated by some linear 

martingale process. However, it is also known that graphs of 

bilinear, ARCH, or GARCH processes, processes that will also 

be discussed in chapter 4, could look this way. Because it is 

difficult to visually detect whether the amplitude of the 

series changes over time or is related over time, we will 

leave it up to the estimation of models in chapter 4 for more 

information. The ability of a model to predict as well as 
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some standard residual diagnostic tests should distinguish the 

most appropriate model for the data. 
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Futures Price x 1 00 for Contract 88(3) 
(Thousands) 
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Futures Price x 100 for Contract 88(6) 
(Thousands) 
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Futures Price x 100 for Contract 88(12) 
(Thousands) 
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Futures Price x 1 00 for Contract 89(3) 
(Thousands) 
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Layout of the Dissertation 

As the title of this thesis suggests, U.S. Treasury 

Bill futures data are the primary focus of the analysis. 

Given the data, the thesis has three objectives? 

characterization, estimation, and prediction. First, the time 

series properties of data are characterized. By this it is 

meant that the properties of nonstationarity and nonlinearity 

are investigated. There has been somewhat of an ongoing 

curiosity as to whether futures prices contain a unit root.3 

The property of nonstationarity is addressed and several 

different tests for unit roots are applied to the data in the 

second chapter. 

In the third chapter, the property of nonlinear 

dependence is examined. In a preliminary analysis of some 

summary statistics of the data, it seems likely that nonlinear 

dependence is an intrinsic part of the data. Since this 

property has recently been found in other financial markets, 

namely, the foreign exchange rate market and stock market, it 

raises even more suspicion. First, the data are checked for 

any dependence, linear or nonlinear, by applying some general 

tests of dependence. Then the data are purged of any linear 

dependence by regressing price differences on ten lags using 

ordinary least squares estimation. This is done to avoid any 

sensitivity that tests for nonlinearity may have for linear 

3 A full discussion of this curiosity is given in the 
introduction to chapter 2. 
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dependence. The residuals from this procedure are then 

examined for nonlinear dependence. 

It is hypothesized that the data have at least one of two 

types of nonlinear dependence, multiplicative and/or additive. 

Using a new test, known as the third order moment test, the 

nonlinear dependence found in the data is then classified as 

one of these types. Whichever type of dependence is found, 

this information can then be used to identify the most 

appropriate nonlinear models. 

In the fourth chapter, the second objective, estimation, 

is addressed. Here, I estimate several univariate time series 

models, evaluate their suitability, and consider the way 

nonlinearities enter the data and their implications for the 

importance of nonlinearities. 

Prediction using the nonlinear models is the last 

objective and is also encountered in the fourth chapter. It 

is here that two important questions are answered. First, can 

the nonlinearities that exist in the data be exploited to earn 

profits?'' Securities traders as well as other researchers, 

who have not been able to use nonlinear dependencies to assist 

in predicting the mean of the process in other financial 

markets, will find both this question and its answer 

interesting. This question is answered by comparing 

predictions from the nonlinear models to the prediction from 

* Note that the ability to make profits will depend not 
only on a successful model, but on the costs of trading 
securities. 
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a simple linear model since it is believed that futures prices 

behave like random walks. The second question is concerned 

with the most appropriate nonlinear model. One particular 

family of nonlinear models, called ARCH models, have been used 

and sometimes abused by researchers when modeling financial 

data.- It is in this chapter that ARCH models are compared 

with other nonlinear models of futures prices. 

In the conclusion of this dissertation, several important 

discoveries are pointed to. The results, taken as a whole, 

should prove useful for researchers of futures markets and 

will offer food for more research on the time series 

properties of futures markets in general. 
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CHAPTER 2 
NONSTATIONARITY 

Introduction 

It has long been assumed that changes in futures prices 

are covariance stationary processes (see, for example, Telser, 

1967? Stevenson and Bear, 1970; Martell and Helms, 1978; and 

Trevino and Martell, 1984). By this it is meant that, 

although the probability distribution of the series may change 

over time, the mean and variance of the series do not change 

with time and the covariance between two realizations in time 

depends only on the time difference, not on the time instant. 

This assumption of covariance or wide-sense stationarity is 

necessary for time-invariant representations of futures prices 

in terms of their conditional expectations. In addition, for 

any of the ergodic theorems to hold, stationarity is 

necessary. Cargill and Rausser (1975), Stevenson and Bear 

(1970), and Alexander (1961) report trends in commodity 

futures prices, Goldenberg (1989) finds a unit root in daily 

S&P 500 futures prices, and Doukas (1990) finds a unit root in 

daily soy meal, soybean, and soy oil futures prices. The 

conflicting discoveries on the issue of stationarity in 

futures prices suggest that a formal test of the data is 

23 
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required before any other time series analyses may be 

conducted. In this chapter I set out to establish whether or 

not futures prices are nonstationary. 

For the simplest of unit root tests, under the null 

hypothesis, the assumption is that the data follow a random 

walk, i.e., Pt = P,^ + et, where Pt is the daily settlement 

price of a futures contract in period t and et is an 

independently and identically distributed (i.i.d.) normal 

random variable with mean 0 and variance a2. A conventional 

and easily applied test for nonstationarity is the DF test, 

suggested by Dickey and Fuller (1979). This test, however, is 

somewhat limited since the error term is assumed to be 

strictly i.i.d. N(0,a2) under the null hypothesis. Recently, 

a lot of effort has been exerted on developing tests that 

relax this assumption. The Dickey-Fuller test for unit roots 

in the standard AR(1) model can be generalized to test for 

unit roots in an AR(p) model. The Augmented Dickey-Fuller 

(ADF) test, suggested by Said and Dickey (1984), extends the 

Dickey-Fuller test to account for serial correlation that is 

typically produced by autoregressive moving average (ARMA) 

models. Two tests that nonparametrically adjust the DF test 

to correct for infinite-dimensional nuisance parameters 

associated with et are the Za and Zt tests suggested by 

Phillips (1987) and Phillips and Perron (1988) respectively. 

The Phillips' tests are designed to handle generalized forms 
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of serial correlation and/or heteroskedasticity that may be 

contained in et. 

In general, 'unit root tests have received a lot of 

attention in contemporary research and have become major tools 

in time series analyses. This chapter proceeds as follows. 

In the next section, the details of the unit root tests 

applied in this chapter are given. In the section entitled 

"Testing the Data for Nonstationarity," I present the results 

from applying these tests to the data. I distinguish the 

appropriate Dickey-Fuller model to be used in the unit root 

tests, the most suitable random walk model to be used in 

subsequent chapters, and briefly conclude in the last section. 

Tests for Nonstationarity 

A major branch of the literature contains tests that are 

all based on the following observation. Consider the simplest 

data generation process that allows one to discuss the concept 

behind these tests: 

Pt = pPt_r + ut; ut~i.i.d. (0,Oy) (2.1) 

P 0  = 0 .  

If the null hypothesis is H0: p = p0, where I p0l <1, then the 

t-statistic is asymptotically normally distributed. If p0 

= 1, then the test statistic is no longer asymptotically 

normal. The resulting distribution is not even symmetric. 
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Critical values for the hypothesis of a unit root are found by 

using Monte Carlo simulation. They were first tabulated by 

Dickey and presented in Fuller (1976). This simple test is 

known as the Dickey-Fuller (DF) test. The critical values 

that they tabulated, which are presented below, are based on 

the following three models. 

i±Pt = (p-l)PM + ut (2.2) 

A Pt = a + (p-DPj.j + ut (2.3) 

A Pt = a + yc + (p-l)Pt_1 + ut (2.4) 

where APt = Pt - Pfc-!. If we let the sample size = T and 

a = the cumulative probability, then the critical values, in 

tables 2.1-2.3 below, correspond to the statistic 

(p-l)/SE(p) for models 2.2-2.4 respectively. 

Table 2.11 

Empirical Cumulative Distribution of (p-l)/SE(p) 
for Model 2.2 

T •
 

o
 

II (0 01  0 .025 0 .  05 

o
 i
 

o
 0 .90  0 .  95 0 .975 0  .99 

25 -2  .  66 -2 .26 -1 .  95 -1 .60 .92 1 .  33 1 .70 2 .  16 
50 -2 .  62 -2 .25 -1 .  95 -1 .61 .91 1 .  31 1 .66 2 .  08 

100 -2 .  60 -2 .24 -1 .  95 -1 .  61 .90 1 .  29 1 .  64 2  .03  
250 -2 .  58 -2 .23 -1 .  95 -1 .62 .89 1 .  29 1 .63 2 .01  
500 -2 .  58 -2 .23 -1 .  95 -1 .62 .89 1 .  28 1 .62 2 .  00 

00 -2 .  58 -2 .23 -1 .  95 -1 .  62 .89 1 .  28 1 .62 2 .00  

1 Tables 2.1-2.6 are found in Fuller (1976). 
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Table 2.2 

Empirical Cumulative Distribution of (p-l)/SE(p) 
for Model 2.3 

T a = 0 H
 

O
 

•
 0.025 0 .05 0  . 10 0.90 0 .  95 0 .  975 0 .  99 

25 -3 .75 -3.33 -3 .00 -2 .63 -0.37 0 .  00 0 .  34 0 .  72 
50 -3 .58 -3.22 -2 .93 -2 .60 -0.40 - 0 .  03 0 .  29 0 .  66 
100 -3 .51 -3.17 -2 .89 -2 .58 -0.42 - 0 .  05 0 .  26 0 .  63 
250 -3 .46 -3.14 -2 .88 -2 .57 -0.42 -0. 06 0 .  24 0 .  62 
500 -3 .44 -3 .13 -2 .87 -2 .57 -0.43 -0. 07 0 .  24 0 .  61 
00 -3 .43 -3.12 -2 .86 -2 .57 -0.44 - 0 .  07 0 .  23 0 .  60 

Table 2.3 

Empirical Cumulative Distribution of (p-l)/SE(p) 
for Model 2.4 

T 

o
 II (

0 

01 0 .025 0.05 0. 10 0.90 0. 95 0. 975 0. 99 

25 -4. 38 -3 .95 -3.60 -3 . 24 -1.14 -0. 80 0. 50 0. 15 
50 -4. 15 -3 .80 -3.50 -3. 18 -1.19 -0. 87 0. 58 0. 24 
100 -4. 04 -3 .73 -3.45 -3 . 15 -1.22 -0. 90 0. 62 0. 28 
250 -3. 99 -3 .-69 -3.43 -3. 13 -1.23 -0. 92 0. 64 0. 31 
500 -3. 98 -3 . 68 -3.42 -3 . 13 -1.24 -0. 93 0. 65 0. 32 
00 -3. 96 -3 .66 -3.41 -3 . 12 -1.25 -0. 94 0. 66 0. 33 

Concurrently, Dickey and Fuller presented an expanded version 

of the DF test in Dickey and Fuller (1979) . The initial test 

discussed above handles the AR(1) case, whereas the expanded 

version handles the AR(p) case. For Pt as an AR(p) process 

Pt = EpAj + et (2-5) 
J'=I 

a test can be constructed by using the regression model 

A Pt = (p-l)Pw + Pt_j + ut (2.6) 
j'-i 
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where APt = Pt - Pt.x. The test statistic, as in the DF test, 

is the t-statistic for the coefficient of Pt-x- This model can 

also be extended to include a constant and a trend just as the 

models in 2.3 and 2.4. The model presented in (2.6) is known 

as the Augmented Dickey-Fuller (ADF) test. 

Said and Dickey (1984) show that the ADF test can also be 

used to test for unit roots even when the error term ut 

follows an MA process or a general ARMA(p,q) process, so long 

as the ARMA process is stationary and invertible. The only 

proviso is that p rises with the sample size T so that there 

exists numbers c>0 and r>0, such that cp > T1/r and T"1/3p -• 0. 

Theoretically, many choices of p can satisfy this requirement. 

Schwert (1989) showed that tests for nonstationarity are 

affected by the p'resence of a moving average or invertible 

autoregressive parameter in the residuals of Dickey-Fuller 

models given in equations (2.2a-c). However, depending on the 

value of this parameter, different lengths of p are 

appropriate. Hence, Schwert (1989) suggests that p be chosen 

according to the following two equations, one which gives a 

shorter length of p and the other a longer length. 

i4 = INT[A(T/100)1/i] (2.7) 

112 = INT[12 (T/lOO)1/4] (2.8) 

where INT[.] denotes the integer component. By using these 



www.manaraa.com

29 

two values for "1", two ADF statistics, ADF[4] and ADF[12}, 

corresponding to 1^, and 112 respectively, are constructed. 

The adjustment to the DF test that the ADF test makes is 

simply one to retain the validity of the assumption of white 

noise errors in the DF regression. The Za and Zt tests, 

suggested by Phillips (1987) and Phillips and Perron (1988) 

respectively, are tests that, instead of adjusting the DF 

regression before estimation, modify the DF regression after 

estimation through a nonparametric adjustment. Hence, the 

error term is not assumed to follow a white noise process. 

Like the ADF test, these tests handle possible autocorrelation 

that may exist between the first differences of Pt. In 

addition, these tests make allowances for heteroskedasticity 

that the residu&ls of the DF regression may exhibit. 

Formally, to find both the Za and Zfc test statistics one starts 

from the DF regression, i.e., 

A Pt = a + p pt_i + et (2.9) 

The Za statistic is equal to T/3 - ADa where /3 is the OLS 

estimate of (3 in equation (2.9) and ADa is defined as 

1 (s 2  - s 2) 
2 { T1 e' 
T (2.10) 

\.£ <fVa - z.i>2 
1 t=2 

where s^ is the maximum likelihood estimate of the sample 

variance of the residuals et. That is 
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4 - i t 4  < 2 - l l )  1 t=i 

and 

S^1 - -E«2t + X) etet-j- (2.12) 7Tl 71/—' C T^—' 
-1 t=l 1 J=1 t=J+l 

Newey and West (1987) suggested the weights 

foj! = {1 - j/ (1 + 1)} to ensure that the estimate of the 

variance s^ is positive as well as consistent. The condition 

on the lag structure is simply that 1 -» °o as T -» «>, such that 

1 is o(T1/'1). Note that Schwert's (1989) suggestion satisfies 

this condition. Hence, I use, as Schwert did, 1A and 112 to 

calculate the appropriate number of lags in and report two 

Za statistics. To calculate the statistic, efc is replaced by 

its OLS estimate et. The Za test uses critical values that are 

used for the alternative expression for the DF test statistic, 

T$. These critical values are given in tables 2.4-2.6 below. 

The Zt statistic is defined as 

1 (<5 2 - s2> 
S e x  ~2 T 1  e  = tp(-l-) 
s T1 

\ 

2— (2.13) 
®t*7 _HL 

- p-i> 
t=2 

where tp is the Student t-statistic of ft from the simple DF 

regression and sze and s^ are defined as above. As for the Za, 

there are two statistics for the Zt statistic, one 

corresponding to each lag structure, 1A and 112. The critical 
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values for the Zt statistic are identical to those used for 

the DF and ADF tests above. 

Table 2.4 

Empirical Cumulative Distribution of T$ 
for Model 2.2 

T a= 0.01 0.025 0.05 o
 

• O
 

0. 90 0. 95 0. 975 0. 99 

25 -11.9 -9.3 -7.3 -5.3 1. 01 1. 40 1. 79 2. 28 
50 -12.9 -9.9 -7.7 -5.5 0. 97 1. 35 1. 70 2. 16 
100 -13.3 -10.2 -7.9 -5.6 0. 95 1. 31 1. 65 2. 09 
250 -13.6 -10.3 -8.0 -5.7 0. 93 1. 28 1. 62 2. 04 
500 -13.7 -10.4 -8.0 -5.7 0. 93 1. 28 1. 61 2. 04 
00 -13.8 -10.5 -8.1 -5.7 0. 93 1. 28 1. 60 2. 03 

Table 2.5 

Empirical Cumulative Distribution of T$ 
for Model 2.3 

T a= 0.01 0.025 0.05 0.10 0. 90 0. 95 0. 975 0. 99 

25 -17.9 -14.6 -12.5 -10.2 -0. 76 0. 01 0. 69 1. 40 
50 -18.9 -15.7 -13.3 -10.7 -0. 81 -0. 07 0. 53 1. 22 
100 -19.8 -16.3 -13.7 -11.0 -0. 83 -0. 10 0. 47 1. 14 
250 -20. 3 -16.6 -14.0 -11.2 -0. 84 -0. 12 0. 43 1. 09 
500 -20.5 -16.8 -14.0 -11.2 -0. 84 -0. 13 0. 42 1. 06 
00 -20.7 -16.9 -14.1 -11.3 -0. 85 -0. 13 0. 41 1. 04 

Table 2.6 

Empirical Cumulative Distribution of Tj& 
for Model 2.4 

T a= 0.01 0.025 0. 05 0.10 0 .90 0 .95 0. 975 0. 99 

25 -22.9 -19.3 -17.9 -15.6 -3 .66 -2 .51 -1. 53 -0. 43 
50 -25.7 -22.4 -19.8 -16.8 -3 .71 -2 .60 -1. 66 -0. 65 
100 -27.4 -23.6 -20.7 -17.5 -3 .74 -2 .62 -1. 73 -0. 75 
250 -28.4 -24.4 -21.3 -18. 0 -3 .75 -2 .64 -1. 78 -0. 82 
500 -28.9 -24.8 -21.5 -18.1 -3 .76 -2 .65 -1. 78 -0. 84 
00 -29.5 -25.1 -21.8 -18.3 -3 .77 -2 . 66 -1. 79 -0. 87 
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Both Za and Z't test statistics, as the DF and ADF tests, 

can be based upon the three different models, 2.2-2.4, above. 

However, model 2.4 must be modified when used for formulating 

the Z statistics. We modify 2.4 as follows: 

A Pt = a + y(t-T/2) + (p-DP^ + et. (2.4') 

Testing the Data for Nonstationarity 

In this section I apply the tests described above to the 

Treasury Bill futures data. The three regression models 

listed in 2.2-2.4, using 2.4' where appropriate, are employed 

under each test. In addition, the lag structures 14 and 112 

are used for the ADF, Za, and Zt tests. In total, twenty-one 

statistics will be presented., seven for each model 2.2-2.4. 

Tables 2.7-2.9 correspond to the models 2.2-2.4 respectively. 

Table 2.7 

Unit Root Tests with Zero Mean and Trend under the Ho 
(Model 2.2) 

Tests 88 (3) 88(6) 88(9) 88(12) 89(3) 

DF 0.538 -0.202 -0.492 -0.535 -0.591 
ADF(4) 0.335 0. 087 -0.689 -0.604 -0.730 
ADF(12) 0.276 0.223 -0.485 -0.668 -0.458 
Za (4) -1.278 -0.155 1. 604 0.883 1.916 
Za(12) 0.065 0.019 -0.026 -0.011 -0.037 
Zt (4) 0.160 -0.238 -0.153 -0.361 -0.247 
Zt(12) -0.139 • -0.467 -0.355 -0.554 -0.299 

88(3)-89(3) denotes the five contracts. All tost statistics in the table, except those 

for the Za test, should be compared to the critical values found in table 2.1. The 

critical values for the Za test should be compared to the critical values found in table 
2.4. * and ** denotes a rojection of the Ho for a ono-sided test at the 5X and IX levels 

of significance respectively. Note that large positive statistics indicate a rejection 

of a unit root but not of nonstationarity. 



www.manaraa.com

33 

Table 2.8 

Unit Root Tests with Nonzero Mean under the Ho 
(Model 2.3) 

Tests 88 (3) 88 (6) 88(9) 88(12) 89 (3) 

DF 
ADF(4) 
ADF(12) 
Za: (4) 
Za(12) 
Zt (4) 
Zt(12) 

-1.744 
-1.913 
-2.059 
-8.486 
-6.846 
-1.813 
-1.937 

' -2.024 
-1.686 
-2.149 
-7.906 
-7.412 
-2.016 
-2.044 

-1.948 
-1.766 
-2.214 
-6.177 
-7.468 
-1.993 
-1.947 

-1.925 
-1.783 
-2.398 
-6.855 
-8.370 
-1.931 
-1.938 

-1.647 
-1.181 
-1.518 
-5.763 
-7.238 
-1.582 
-1.633 

See notes under table 2.7. The critical values are found in tables 2.2 and 2.5. 

Table 2.9 

Unit Root Tests with Nonzero Mean 
(Model 2.4) 

and Trend under the 

Tests 88 (3) 88(6) 88(9) 88(12) 89(3) 

DF 
ADF(4) 
ADF(12) 
Za (4) 
Za(12) 
Zt (4) 
Zt(12) 

-1.745 
-1.911 
-2.044 
-8.497 
-6.874 
-1.816 
-1.932 

-2.027 
-1.684 
-2.146 

* -7.893 
-7.425 
-2.019 
-2.042 

-1.945 
-1.756 
-2.214 
-6.190 
-7.479 
-1.991 
-1.945 

-1.977 
-1.816 
-2.393 
-7.268 
-7.848 
-1.987 
-1.987 

-1.679 
-1.194 
-1.486 
-5.863 
-7.389 
-1.618 
-1.658 

See notes under table 2.7. The critical values are found in tables 2.3 and 2.6. 

The test statistics applied to every model unanimously 

indicate that the data is nonstationary and the unit root 

hypothesis cannot be rejected. To be sure, however, I conduct 

the same unit root tests on the first differences of prices. 

These results are given in tables 2.10-2.13. Regardless of 

the data set, the test used, or the model specified, at the 5% 

level of significance the tests rejects the null hypothesis 
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that first differences of futures prices contain a unit root. 

Hence, one can be more certain that the levels of futures 

prices are integrated of order 1 or that they contain a unit 

root. 

Table 2.10 

Unit Root Tests with Zero Mean and Trend under the Ho 
Using First Differences of Prices (Model 2.2) 

Tests 88 (3)' 88 (6) 88(9) 88(12) 89 (3) 

DF -21.44 -21.91 -22.79 -22.44 -21.56 
ADF(4) -8.56 -8.46 -8.38 -8.62 -8.74 
ADF(12) -4.11 -4.25 -3.96 -3.81 -4.21 
Za (4) -499.7 -435.0 -448.9 -472.2 -420.3 
Za(12) -536.9 -469.8 -490.8 -511.3 -426.5 
Zt (4) -20.27 -21.66 -23.37 -23.25 -24.18 
Zt(12) -19.44 -20.11 -21.19 -21.49 -23 .83 

88(3)-89(3) denotes the five contracts. All test statistics in the table, except those 

for the Za test, should be compared to the critical values found in table 2.1. The 

critical values for the Zee test should be compared to the critical values found in 
table 2.4. 

Table 2.11 

Unit Root Tests with Nonzero Mean under the Ho 
Using First Differences of Prices (Model 2.3) 

Tests 88 (3) 88 (6) 88(9) 88(12) 89 (3) 

DF -21.43 * -21.88 -22.78 -22.43 -21.54 
ADF(4) -8.56 -8.45 -8.40 -8.64 -8.76 
ADF(12) -4.09 -4.26 -3.98 -3.86 -4.20 
Za (4) -499.7 -434.9 -448.5 -472.0 -420.0 
Za(12) -536.1 -469.6 -488.4 -509.5 -425.1 
Zt(4) -20.27 -21.63 -23.40 -23.26 -24.22 
Zt(12) -19.45 -20.10 -21.29 -21.56 -23.95 

The critical values for this table are found in tables 2.2 and 2.5. 
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Table 2.12 

Unit Root Tests with. Nonzero Mean and Trend under the Ho 
Using First Differences of Prices (Model 2.4) 

Tests 88(3) * 88(6) 88(9) 88(12) 89(3) 

DF -21.41 -21.85 -22.75 -22.40 -21.56 
ADF(4) -8.58 -8.45 -8.39 -8.63 -8.80 
ADF(12) -4.04 -4.22 -3.97 -3.85 -4.21 
Za (4) -499.5 -435.1 -448.5 -472.0 -419.6 
Za(12) -534.5 -468.9 -488.2 -509.6 -420.9 
Zt (4) -20.27 -21.61 -23.37 -23.24 -24.33 
Zt(12) -19.47 -20.11 -21.27 -21.53 -24.38 

The critical values for this table are found in table 2.3 and 2.6. 

In the next section we choose the most appropriate random walk 

model. 

Choosincr the Most Appropriate Random Walk Model 

Because the random walk will be used in the analyses 

conducted in the next chapters, an ordinary least squares 

(OLS) regression is conducted on all five data sets to suggest 

which of models 2.2-2.4 is the most appropriate. The results 

from running the regression 

Pt = a + pPt.i + yt + et (2.14) 

are given in table 2.13. The t-statistic given for $ is the 

statistic ($-1)/op. 
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Table 2.13 

Choosing the Appropriate Random Walk Model I 

Data 88 (3) 88 (6) 88 (9) 88(12) 89 (3) 

A 
a 1.36 5.14 5.88 1.55 1.48 

(1.74) (3.53) (3.64) (1.97) (1.68) 

$ 0.99 0.95 0.94 0.98 0.98 
(-1.19) (-3.19) (-3.45) (-2.39) (-2.11) 

A 
Y .00002 .00003 -.00001 -.00002 -.00003 

(0.42) (0.42) (-0.13) (-0.46) (-0.81) 

T-statistics are given in parentheses. 

In none of the data sets is it suggested to use a random walk 

with a trend term. Under the premise that futures prices 

contain a unit root and because the results of table 2.13 

indicate in four of the five data sets that $ is significantly 

different from 1 at conventional levels of significance, I 

discarded the trend term and the constant term when they were 

insignificant and estimated the models again by using OLS. 

These results are given in table 2.14. 

Table 2.14 

Choosing the Appropriate Random Walk Model II 

Data 88 (3) 88(6) 88 (9) 88(12) 89(3) 
A 
a 1. 60 

(2.02) 
1.70 

(1.94) 

A 
a 1. 60 

(2.02) 
1.70 

(1.94) 

$ 1.00 
(0.00) 

0.98 
(-2.02) 

0.98 
(-1.95) 

1.00 
(-0.58) 

1. 00 
(-0.58) 

T-sbatistics are given in parentheses. I also estimated the simple random walk for data sets 

QQ(6) and 88(9) and in neither case could I reject the estimated 0 as being significantly 

different from one. 
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From table 2.14 one can clearly see that the best random walk 

model is one without drift nor trend term. Because these 

results are also consistent with another study conducted on 

financial futures prices (see Goldenberg, 1989), this model is 

the one that will be used in later analyses. 
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CHAPTER 3 
NONLINEAR DEPENDENCE 

Introduction 

In the last twenty-five years, solutions to equilibrium 

asset pricing models have suggested two very different asset 

pricing functions. Many researchers, beginning with Samuelson 

(1965), have used these models to propose that asset prices 

behave as linear martingale processes. The linear martingale 

process arises out of the assumptions of perfect capital 

markets and an instantaneous adjustment process or other more 

specialized assumptions such as the serial independence of 

dividend growth rates along with constant relative risk 

aversion (see Ohlson, 1977). Other researchers, Lucas (1978) 

and Breeden (1979), have shown that general equilibrium asset 

pricing models are more likely to be consistent with pricing 

functions that are stochastic and nonlinear if agents are risk 

averse. Why should nonlinear dependence or departures from 

linear martingales be so surprising then, when the assumptions 

under which linear martingale processes hold are, 

comparatively, so restrictive? Actually they are not 

surprising, but what is is that theoretical extensions, which 

incorporate the assumption of risk aversion, have not been 

38 
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able to account for the departures from the martingale process 

that one sees empirically. Hence, tests and explanations of 

market performance, based on both linear and nonlinear asset 

pricing functions are inconclusive. 

In the recent past there have been many statistical 

contributions made to the nonlinear time series literature. 

With these new contributions, to name a few, the ARCH 

specification test (Engle, 1982), the ARCH-in-mean 

specification test (Engle, Lilien, and Robins, 1987), Tsay's 

test for nonlinear dependence (1986) , and the BDS test 

proposed by Brock, Dechert, and Scheinkman (1987), researchers 

in both economics and finance have turned again to 

investigating the statistical properties found in economic and 

financial data. In studies of financial data, Scheinkman and 

LeBaron (1989) and Akgiray (1989) found stock returns to be 

nonlinearly dependent. Hsieh (1989), and Papell and Sayers 

(1989) found that changes in foreign exchange rates are 

nonlinearly dependent. In addition, both of the latter papers 

using changes in exchange rates and the paper by Akgiray 

(1989) using stock returns found that these data are 

characterized by effects that may be successfully modelled by 

ARCH or Generalized ARCH models. 

The purpose of this chapter is to test changes in 90-day 

U.S. Treasury Bill futures prices for nonlinear dependence. 

In chapter 2, I established that futures prices are 

nonstationary, that is, that changes in futures prices are 
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stationary. What has not been settled is the process by which 

these changes evolve. If changes are independent, then the 

random walk model can be justified; if not, then nonlinear 

dependence must be considered when modelling the data. 

In the next section, I investigate whether or not changes 

in the contract's price are independent. Several tests, both 

parametric and nonparametric, are used for this purpose. 

Next, in the section entitled "A More Powerful Test of 

Dependence,11 a brief account of the Brock, Deechert, 

Scheinkman (1987) , hereafter BDS, statistic is given and then 

used to detect any dependence that the data may contain. In 

the section following this one, three tests for nonlinearity 

are discussed and then conducted, namely, Tsay's (1986) test, 

a specification test for Engle's (1982) autoregressive 

conditional heteroskedasticity (ARCH) model, and the BDS test 

applied to filtered data. These tests are jointly used since 

Tsay's test has good power against nonlinear moving average 

processes and bilinear models, ARCH processes should be 

detected by the ARCH specification test, and if other types of 

nonlinear dependence exist, then the BDS test, being a more 

general test, should recognize them. In the penultimate 

section I explain and differentiate between the types of 

nonlinearity that may describe the data. For this purpose I 

use Hsieh's (1989) test. The summary completes the chapter. 
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Testing for Independence 

The methods used are both parametric and non-parametric 

tests based on the time domain. Namely, the analysis involves 

the parametric Box-Pierce Q test and the non-parametric 

difference-sign test, turning point test, and a test based on 

a mixed statistic. Tests involving spectral analysis or 

filters present complexities and therefore are avoided (see 

Praetz, 1976). 

Q refers to the Box-Pierce statistic and is used to test 

the assumption of white noise disturbances. The alternative 

hypothesis under this test, namely non-white noise 

disturbances, might seem rather vague, however the Q-test can 

be derived as the Lagrange Multiplier test against AR(p) or an 

MA(p) process. It is distributed x2(k) where k is the lag. 

K, the statistic of the difference-sign test, is the number of 

+ signs in the sequence et and is asymptotically distributed 

normally with mean (N-l)/2 and variance (N+l)/12 where N is 

the length of the sequence. If a sequence is independent with 

mean zero, then the number of positive values should not be 

significantly different from the amount of negative ones. 

Hence, the K-statistic measures this departure from 

independence. The turning point test statistic, r, refers to 

the total number of runs up or down. As opposed to the K-

statistic, this statistic measures departures from 

independence by considering the sequence of positive and 

negative values. It can be the case that there are as many 
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positive as negative values, but there are only two runs. r 

is also asymptotically distributed normally with mean (2N-l)/3 

and variance (16N-29)/90. The mixed test, sometimes known as 

a u-run statistic) is formed by combining the statistics of 

the difference-sign and turning points tests. The statistic 

is constructed as follows: 

Tk .X  =  z 2
K

+ z l  ( 3 * 1 )  

where the Z's are standardized forms of K and r respectively. 

The limiting distribution of TKr is %2(2) since K and r are 

asymptotically independent. The intention of the u-run 

statistic is to make the test less sensitive to specific 

patterns and more sensitive to general departures from 

independence. 

The results from applying these tests to the series et 

are presented in Table 3.1. 

Table 3.1 

Tests For Independence 

Contracts 88 (3) 88 (6) 88 (9) 88(12) 89 (3) 

Q (lag 6) 
Q (lag 12) 
Q (lag 18) 
Q (lag 24) 

11.77 
14.58 
17.51 
20.10 

3.87 
10.50 
11.80 
17.02 

10.22 
16.05 
18.68 
24.49 

13.34* 
17.40 
20.47 
26.36 

14.92** 
21.49* 
23.77 
27.65 

ZK -.55 -.08 -.34 -.40 . 32 

Zr -2.39** -.46 -.86 -1.24 -1. 65 

T AK,r 6.01* .22 .86 1.70 2.86 

Zj^ and Zr refer to tho standardized forms of K and r respectively. The null hypothesis under all 

tests is that successive price differences are random. * and ** denote a rejection of the HQ at 

tho 5X and 2.5X levels of sigftificance respectively. 
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By looking at table 3.1, it is reasonable to accept that price 

changes for any of the five contracts are independent. This 

is not surprising for several reasons. For one, these tests 

are not very powerful. Secondly, unless the distribution of 

price changes is normal, these tests can only verify that 

these changes are uncorrelated, not statistically independent. 

Thirdly, time series generated by nonlinear moving average 

models, threshold autoregressive models, bilinear time-series 

models, or ARCH models exhibit little or no serial correlation 

even though the time series may be statistically dependent 

across time. Because of these reasons and the possibility 

that nonlinear asset pricing equations may provide a better 

description of the evolution of some asset prices, these time 

series are tested for nonlinearities in the third section. 

A More Powerful Test of Dependence: The BPS Test. 

The BDS test, suggested in a paper by Brock, Dechert, and 

Scheinkman (1987), also is designed to detect departures from 

independence. This test, however, as compared to the tests 

discussed above, is more powerful. It has the power to 

recognize dependencies in underlying processes that are 

nonlinear as well as linear. As compared to other well known 

tests of nonlinear dependence, such as the ARCH specification 

test, the BDS test is more general. It is able to discern 

nonlinearities that are often not found when other tests, 

which target specific types of nonlinearity, are used. 
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Formally, the BDS statistic is constructed by using the 

correlation integral. The correlation integral is defined as 

C"<6'T) = <3-2) 

where Itf(x,y) = 1 if I x,y I <5 and 0 otherwise, 

I x,y I = max I xj,yj I , <5 is the tolerance distance chosen by 

the researcher, d is the embedding dimension, N = T - d + 1, 

and T is the length of the time series. It is used to 

calculate the number of d-histories whose distances from one 

another is less than the chosen value S. Consider the series 

of successive price differences et. If this series has length 

T, then it is possible to create N = T-(d-l) subseries of 

length d. If we denote these subseries, or d-histories, by 

{etd}, where {etd} = {et, i then the correlation 

integral can be used as a measure of clustering. If the 

subseries cluster in any dimension, then the correlation 

integral will take on relatively larger values. From this 

premise, BDS (1987') formed their statistic. If under the null 

hypothesis et is independently and identically distributed 

random variable, BDS (1987) showed that the quantity 

Da = (Cd(6) — [Cx(<S) ]d} should approach 0 as T -• °o. They also 

show that under the same null, the statistic 

— D 
BDS(d,b) = T2 (3.3) 

where bd is the consistent estimate of the standard deviation 

of the statistic T1/2Dd (for an exact value for this standard 
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deviation see Hsieh, 1989), converges to a N(0,1) variable as 

T oo. For large values of the BDS(d,<S) statistic, the null 

hypothesis, as stated above, is rejected. 

The finite sample properties of the BDS statistic are 

discussed in Hsieh and LeBaron (1988) . To obtain the size of 

the statistic under the null hypothesis, they generated 

pseudo-random numbers for the following distributions: 

1) Standard Normal, 2) Student-t with 3 degrees of freedom, 

divided by 73, 3) Double exponential distribution, divided by 

72, 4) Chi-Square with 4 degrees of freedom, divided by 78, 5) 

Uniform on (0,273), 6) Bimodal mixture of normals: .5 N(3,l) 

+ .5 N(—3,1), divided by 7l0. For the sample size closest to 

the sample sizes considered in this paper, T=500, they 

considered embedding dimensions, d, of 2 through 6 for each of 

these distributions. Using their results, the value of S is 

kept between 1 and 2 times the standard deviation of the data. 

It is only between these values of S that the statistic"s 

finite sample distribution, under all six distributions, 

remains reasonably close to its limiting distribution. 
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Table 3.2 

The BDS Test Statistics for Daily Price Changes 
in Contract 88(3) 

d 5= lxSD 5=1.25XSD <S=1. 5xSD 5=1.75XSD 5=2xSD 

2 3. 9889 4.2956 4.2732 4.2292 4.1517 
3 4. 6422 4.9603 5.0371 5.1754 5.5658 
4 5. 3913 5.5302 5.3738 5.4578 5.9125 
5 6. 1221 6.1966 5.9142 5.9678 6.5182 

SD denotes the standard deviation of the sample containing the data for contract 88(3). The 

standard deviation for this series is 0.1077. Each table below, 3.3-3.6, will use their 

corresponding standard deviation. So SD in table 3.3 corresponds to the standard deviation 

of the sample containing the data for contract 68(6). 

Table 3.3 

The BDS Test Statistics for Daily Price Changes 
in Contract 88(6) 

d 5= lxSD 5=1.25XSD 5=1.5xSD 5=1.75xSD 5=2xSD 

2 5. 2652 5.4226 6.3720 8.3590 9.1464 
3 5. 5696 5.5737 6.0939 7.7403 8.2232 
4 6. 0014 5.8263 6.3881 8.1974 8.9037 
5 6. 4692 6.2700 6.7993 8.5717 9.1674 

See note above. The standard deviation for this series is 0.1121. 

Table 3.4 

The BDS Test Statistics for Daily Price Changes 
in Contract 88(9) 

d 5 = lxSD 5=1.25xSD 5 =1.5xSD 5= 1.75XSD 5 =2xSD 

2 3 . 0903 3.4694 3.1709 3 .2467 3 .9871 
3 3 .2882 3.7190 3.4700 3 . 3861 3 .7738 
4 3 .9425 4.3936 4.1401 4 .1259 4 .8387 
5 4 . 3941 4.9232 4.7071 4 .6220 5 .3392 

See note above. The standard deviation for this series is 0.1071. 
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Table 3.5 

The BDS Test Statistics for Daily Price Changes 
in Contract 88(12) 

d 6=lxSD 5=1.25xSD 5=1.5xSD 6=1.75xSD 6=2xSD 

2 4.0408 4.7484 5.2530 6.7436 8.8590 
3 4.0633 4.8537 5.4303 6.2574 7.5480 
4 4.4454 5.2891 5.8382 6.6060 8.0152 
5 5.2774 6.0475 6.4174 7.1947 8.7382 

See note above. The standard deviation for this series is 0.1086. 

Table 3.6 

The BDS Test Statistics for Daily Price Changes 
in Contract 89(3) 

d (5=lxSD 6=1.25xSD 6=1.5xSD 6=1.75xSD 6=2xSD 

2 1.9596 2.8260 3.7682 4.5710 4.9149 
3 2.7427 3.5656 4.3150 4.7623 4.7898 
4 3 .4330 4.3962 5.2114 5.8230 6.2462 
5 4.0287 4.9942 5.7441 6.2903 6.7551 

See note above. The standard deviation for this series is 0.1033. 

In tables 3.2-3.6 results from the BDS tests are given. 

The BDS statistic strongly suggests that dependence is 

apparent in every data set under investigation. The statistic 

is significant at the 1% level for each contract, the critical 

value being 2.576, under all embedding dimensions, and for all 

sizes of 6 chosen, except for d=2 and <S=lx(standard deviation) 

in the fifth contract. Though these results may seem quite 

strong, they are consistent with other studies of financial 

data. Hsieh (1989), in his investigation of changes in 

exchange rate data, also finds that the BDS statistics are 

extremely significant for all exchange rates, under all 
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embedding dimensions, and for all sizes of S chosen. 

Scheinkman and LeBaron (1989), by means of the BDS statistic, 

also report that weekly stock returns are not i.i.d.. 

Tests for Nonlinear Dependence 

In this section three tests for nonlinear dependence are 

conducted. The ARCH specification test is constructed in the 

familiar way. Under the null hypothesis, the squared 

residuals are assumed to be white noise. The test statistic 

is formulated by regressing the squared daily price changes on 

its lags and calculating the LM test statistic N * R2 where N 

is the number of observations. The statistic is distributed 

Xz(p) where p is the number of lags in the regression. 

Tsay's test, under the null hypothesis, assumes that 

daily price changes are i.i.d.. Simulations in Tsay (1986) 

show that this test has good power against nonlinear moving 

average and bilinear models. The test statistic is 

constructed in the following way: 

1) regress et on a constant and lags e^, . . . ,ew and save the 

residuals ufc 

2) regress ezt.lf e^e,.^, e\.z, ..., e2w on the same lags as in 

1), et.lf .. . , et_j, and save the residual vector Zt 

3) regress ut on Zt and save the residual vt 

4) form the test statistic in the following way: 
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i  (£  z tu t }  [£  z ' tz c ]  -11£ z tu t )  /  j  }  
i|r =  ̂ £-  ̂ ~ F(j,N-J-j-l) (3.4) 

{X) } 
c 

where N is the number of observations, J is dimension of the 

lag in 1) and 2), and j = J(J+l)/2. The limiting distribution 

of the test statistic is F(j,N-J-j-l). 

The results from applying the ARCH specification test and 

Tsay's test to daily price changes are given in tables 3.7 and 

3.8 respectively." According to the ARCH specification test, 

the data exhibits extreme multiplicative dependence for lags 

3, 4, and 5. Nonlinear dependence also appears in the results 

of the Tsay test. 

Table 3.7 

ARCH Specification Tests 

Contracts 88 (3) 88 (6) 88 (9) 88(12) 89 (3) 

lag 1 
lag 2 
lag 3 
lag 4 
lag 5 

1.79 
6.43 
9.08 
24.04* 
24.00* 

1.28 
2.20 
12.59* 
30.09* 
33.47* 

1.71 
1.72 
27.17* 
38.35* 
38.35* 

3.45 
4.55 
38.03* 
53.62* 
55.51* 

2.78 
2.75 
51.86* 
58.24* 
58.23* 

The asterisk in tables 3.7 and 3.8 indicates rejection of the null at the IX level of significance. 

Table 3.8 

Tsay's Tests for Nonlinearity 

J=2 J=3 J=4 J=5 

Contract 88(3) 2.309 3.965* 5.927* 4.034* 
Contract 88 (6) 1.221 4.219* 5.751* 4.136* 
Contract 88 (9) .868 -.361 4.733* 3.439* 
Contract 88(12) 2.260 3.263* 5.519* 3.816* 
Contract 89 (3) 1. 662 3.052* 5.244* 3.186* 
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These tests above, the ARCH specification test and Tsay's 

test, have good power against deviations from their specific 

nulls, but, they, like any statistical test, are not 

foolproof. To lend emphasis to these results the BDS test is 

also applied. As mentioned above, the BDS test is a general 

test of clustering. It distinguishs random from nonrandom 

behavior by considering whether or not a time series clusters 

in dimensions greater than one. However, because the BDS test 

may capture linear as well as nonlinear dependence, before I 

can apply this test, the data are first purged of any linear 

dependence1. To do this efc is regressed on 10 of its lags and 

the residuals are then kept for observation. The estimated 

coefficients and their corresponding t-statistics from these 

regressions are given in table 3.9. 

The results, on the whole, are not surprising. Besides 

the fact that in three of the contracts the third lag has a 

significant t-statistic and in one contract the second lag 

does at the 5% level of significance, the data cannot be 

explained by its lags. 

1 Brock (1987) has shown that the asymptotic distribution 
of the BDS test applies to residuals of linear regressions. 
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Table 3.9 

Regression Results From a Linear Purge of the Data 

Contract 88 (3) 88 (6) 88 (9) 88(12) 89 (3) 

constant . 120 . 011 -.358 -.312 -.242 
(.240) (.021) (-.663) (-.645) (-.507) 

lag 1 .043 .013 .010 -.019 .002 
(.909) (.266) (.202) (-.398) (.032) 

lag 2 . 150* .071 .028 .037 -.056 
(3.20) (1.46) (.559) (.778) (-1.18) 

lag 3 -.015 -.065 -.128* -.139* -.147* 
(-.324) (-1.33) (-2.53) (-2.97) (-3.12) 

lag 4 -.062 .0096 .027 .0063 .055 
(-1.31) (.196) (.525) (.133) (1.16) 

lag 5 -.015 -.048 -.037 .001 -.032 
(-.327) (-.977) (-.723) (.211) (-.667) 

lag 6 .066 .060 .073 .061 .066 
(1.40) (1.23) (1.44) (1.29) (1.39) 

lag 7 .044 .080 .075 .043 .039 
(.923) (1.64) (1.48) (.897) (.828) 

lag 8 -.069 -.082 -.069 -.047 -.094* 
(-1.47) (-1.67) (-1.37) (-.995) (-2.00) 

lag 9 .121 .048 .060 .052 .023 
(.259) (.983) (1.18) (1.10) (.481) 

lag 10 .370 .063 .043 .056 .015 
(.789) (1.36) (.851) (1.24) (.328) 

R2 .033 .031 .037 .034 .044 

T-statistics are in parentheses. The asterisk indicates significance at the 5X level of 

significance. 

In tables 3.10-3.14, the results from applying the BDS 

test to these residuals, or linearly purged daily price 

changes, are given. As compared to tables 3.2-3.6, the BDS 

statistics are not as significant and for several embedding 
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dimensions and sizes of 5, especially in contracts 88(9) and 

89(3), the test statistic, using the same critical value as 

that above, is insignificant at the 1% level of significance. 

Nevertheless, nonlinear dependence is still an apparent part 

of all the contracts when the data is considered in the third, 

fourth, and fifth dimensions. 

Table 3.10 

The BDS Tjsst Applied to the Linearly Purged 
Contract 88(3) 

d 5=lxSD 5=1.25xSD 5=1.5xSD 5=1.75xSD 5=2xSD 

2 3.5623 3.7048 3.6264 3.5316 3.5157 
3 4.1828 3.9711 3.4567 3.1463 3.0836 
4 4.9650 4.6282 3.9915 3.6501 3.6135 
5 5.7971 5.3844 4.6339 4.2265 4.3420 

In tables 3.10-3.14 the BDS test is applied to the filtered data produced by removing any auto-

correlative structure. SD refers to the standard deviation of the purged contract. SD for 

this series is 0.1068. 

Table 3.11 

The BDS Test Applied to the Linearly Purged 
Contract 88(6) 

d 5=lxSD 5=1.25XSD 5=1.5xSD 5=1.75xSD 5 =2xSD 

2 3.3957 3.6894 3.4385 3.2187 3 .0684 
3 3.9326 4.3487 3.9327 3.4878 3 .1275 
4 4.8076 5.3116 4.8022 4.2651 3 .9466 
5 5.4210 6.0502 5.5844 5.0139 4 .7938 

See note above. The standard deviation for this series is 0.1048. 
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Table 3.12 

The BDS Test Applied to the Linearly Purged 
Contract 88(9) 

d 5=lxSD <S=1.25xSD 5=1.5xSD 5=1.75xSD 5=2xSD 

2 2.4435 2.6273 2.2894 2.2408 2.6197 
3 2.8618 3.1556 3.0697 2.8215 2.9288 
4 3.6944 4.1983 4.2096 3.8941 3.9861 
5 4.2409 4.9140 5.0146 4.6610 4.7389 

See note above. The standard deviation for this series is 0.1059. 

Table 3.13 

The BDS Test Applied to the Linearly Purged 
Contract 88(12) 

d 5=lxSD 5=1.25xSD 5=1.5xSD 5=1.7 5xSD 5=2xSD 

2 2.5457 2.8968 2.9404 2.8035 2 .2895 
3 2.7290 3.2339 3.5171 3.4107 3 .2920 
4 3.4815 4.1733 4.4914 4.4012 4.3097 
5 4.1724 5.0279 5.4630 5.3847 5.2115 

See note above. The standard deviation for this series is 0.1025. 

Table 3.14 

The BDS Test Applied to the Linearly Purged 
Contract 89(3) 

d 5=lxSD 5=1.25xSD 5=1.5xSD 5=1.75xSD 5=2xSD 

2 .2148 .9757 1.8349 2.4199 2.4109 
3 .7160 1.5176 2.3759 2.9271 2.8889 
4 1.8713 2.6158 3.4325 3.9639 4.2048 
5 2.6073 3.3522 4.1733 4.7390 4.9973 

See note above. The standard deviation for this series is 0.1. 

Dif ferentiatincf Between Additive and Multiplicative 
Nonlinear Dependence 

In this section I examine this nonlinear dependence a 

little closer. Several theoretical models have recently been 



www.manaraa.com

54 

proposed to handle nonlinear time series. Some of the more 

popular models are the following: 

Robinson (1979) suggested the Nonlinear Moving Average 

(MA) model. A simple example is 

et = ut + aUt-iUt-2. (3.5) 

Tong and Lim (1980) introduced the threshold autoregressive 

model. An example is 

et = aet.j + ut/ if e^ <1, (3.6) 
et = /Set-! + ut, otherwise. 

Granger and Andersen (1978) proposed the bilinear time-series 

model. 

et = ut + aet-nUt-i. (3.7) 

In all three models above, efc is the daily price change, ut is 

a normal, independently and identically distributed random 

variable with mean 0 and variance a2, E(et/et-^Ut-i) * 0 and 

Varfet/et-^Ut-i) = sz. 

A modest example of Engle's (1982) Autoregressive 

Conditional Heteroskedastic (ARCH) model is 

et = ut (3.8) 

where ufc is conditionally normally distributed with mean 0 and 

variance 

hfc = [a0 + c^eVi] • (3.9) 

The time-varying parameter (TVP) model, of which a simple 

example is 

et = jStet-i + ut (3.10) 

(3t = a + 6 zt + vfc 
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where zt is some variable that explains movements in (3tr 

Var(ub) = cr2u, Var(vt) = a2v, Cov(ut,vt) = 0 for all t and s, and 

Cov(ufc,us) = Cov(vt,vs) = 0, for all t * s. 

In both of these models E fet/e^^u,^) = 0 and Var (et/et-^Ut-!) 

is not constant over time. 

The data contains at least one of two types of nonlinear 

dependence, additive and/or multiplicative. 

Additive dependence: 

= f (et-l/ • • • • • • /^t-k) 

Multiplicative dependence: 

Ut = (®t-l / • • • / et-k/ ̂t-1/ • • • / Ut-k) 

where vt is an i.i.d. random variable with zero mean and 

independent of past et's and ut's, et's are the price 

differences, u„ are the residuals from the linear regression 

results given in table 3.9, and f( ) an arbitrary nonlinear 

function of et.lf...,e^^Ut^,... ,ut.k, for some finite k. We 

differentiate between these types by looking at the data's 

conditional means and variances. If the data solely exhibits 

additive nonlinear dependence, then the dependence enters only 

through the mean of the process and the conditional mean and 

variance will be similar to those expressed by the first three 

models above. If the data solely displays multiplicative 

nonlinear dependence, then the dependence enters only through 

the variance of the process and the last two models would be 

candidates for modelling their evolution. 
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Hsieh (1989) developed a test to distinguish between 

these two types of nonlinear dependence that is based on 

examining the conditional mean and variance of a time series. 

The time series, the first differences of daily prices, is 

first purged of linear dependence by using the residuals from 

the regression results given in table 3.9. The test is defined 

in the following way. 

Pvw(i/ j ) is defined as E(vt,vw,vt.j)/pv3, where vt are the 

residuals from the regression equations in table 3.9. The 

null hypothesis is that the process contains multiplicative 

nonlinearity. Note that this implies that E(vt,vt.irvt.j)/pv3=0 

for all i,j > 0. Pwv(i/j) is estimated by 

!/ rE vt vt-i vt-j ,, 
/J ,-N _ tijii (3.11) 

[i/rj; V^l3/2 
t=l 

Under the null hypothesis, Pvw(i,j) = 0 and 

7T[ (1/T)E vt,vt.lfvt.j] is asymptotically normally distributed 

with mean 0 and variance w^j = plim (1/T)E vt2,,vt.j2 
T-»oo 

provided that the probability limit exists. Given this, 

^vw(i/j) is asymptotically distributed 11(0^^/(7,/) . wi,j/avB 

can be consistently estimated by 

[(l/T)?: vt2,vt.12,vt.J2]/[(l/T)E vt2]2. (3.12) 

The third-order moment test, as Hsieh (1989) calls it, is 

designed to reject the null hypothesis only in the presence of 

additive nonlinear dependence. The test statistic is 
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Hi.j = JT j)/[witj/av6]1/2. (3.13) 

A rejection of the null for a two-tailed test at the 1% level 

of significance is found if the absolute value of H^ is 

larger than 2.576. The test is applied to the futures data 

for p of 5 lags for both i and j. The results are presented 

in table 3.15 below. 

These results indicate that multiplicative dependence is 

the type found in the data for all contracts except 88(9). 

Since the null is rejected for every lag except (1,1) when 

testing contract 88(9), I conclude that there exists additive 

nonlinearity in this data set. However, the results from the 

ARCH specification test above suggests that multiplicative 

dependence is also a part of this data set. Therefore, I 

conclude that all data sets contain at least multiplicative 

dependence and some may contain additive dependence. 
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Table 3.15 

Hsieh's Test to Distinguish Betweeen Additive and 
Multiplicative Nonlinear Dependence 

Lags 
i/j 

Contracts: 88(3) 88 (6) 88 (9) 88(12) 89(3) 

1,1 .395 .308 2.572 .280 .979 
2,1 .521 .764 10.720 1. 601 .926 
2,2 .958 .832 5.864 .552 .550 
3,1 1.680 1.563 14.638 1.235 .804 
3,2 .696 .839 9.740 1.328 .726 
3,3 .627 .776 7.353 .764 .810 
4,1 1.585 1.554 14.914 1.475 1.542 
4,2 1.039 1.326 14.967 1.600 .759 
4,3 1.064 .740 8.732 1.183 1.144 
4,4 1.195 1.195 11.750 1.155 1.207 
5,1 .813 .459 4.007 .699 .272 
5,2 1.817 .960 7.785 .764 .598 
5,3 1.234 .996 8.495 .790 .304 
5,4 . 655 .493 6. 693 .754 .945 
5,5 .876 1.016 10.856 .895 1.132 

Note: The results presented are the absolute values of the test statistics. 

Summary 

There is mounting evidence, Hsieh (1989), Scheinkman and 

LeBaron (1989), and Papell and Sayers (1989) , that asset-

prices contain nonlinear dependencies that are not modelled by 

linear asset-pricing functions nor considered by asset 

traders. 

This chapter shows that dependencies are found in the 

changes of futures prices. Evidence from the BDS test, Tsay's 

test for nonlinearity, and the ARCH specification test 

indicates that this dependence is nonlinear. Hsieh's test, 

the third-order moment test, suggests that the nonlinear 

dependencies are primarily found in the variances of the data. 
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CHAPTER 4 
PREDICTION 

Introduction 

In chapter 2, using several tests for nonstationarity, I 

concluded that Treasury Bill futures prices contain a unit 

root. In chapter 3, first differences of the data were tested 

for nonlinear dependence. Relying on the results from several 

tests, an part of the behavior of Treasury Bill futures prices 

appears to be explained by nonlinear dependence. Hsieh's 

(1989) test indicated that the type of nonlinear dependence is 

multiplicative, i.e., the nonlinearity enters through the 

variance of the process. However, when using Tsay's (1986) 

test, which has good power against processes that contain 

additive nonlinear dependence (nonlinear dependence that 

enters through the mean of the process), nonlinear dependence 

was found. Hence, it is very possible that the data contain 

both additive and multiplicative nonlinear dependence. 

In this chapter the issues of modelling nonlinear time 

series and nonlinear prediction are addressed. Because of the 

results in the previous chapter, the data are presumed to 

contain nonlinear dependencies. Hence, I first model the data 

using several nonlinear models and then compare them against 

59 
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a simple random walk process and each other by considering 

their predictive power. 

So far, this concern has not been addressed in the 

futures markets' literature, but recently, in the exchange 

rate literature, this issue has emerged. The conclusions are 

mixed and depend upon the particular models used to capture 

the nonlinearities. Meese and Rose (1989) find that the poor 

explanatory power that several popular exchange rate models 

exhibit cannot be attributed to nonlinearities arising from 

time deformation or improper functional form. Diebold and 

Nason (1990) nonparametrically estimate the conditional mean 

functions of ten major exchange rates using a technique known 

as "locally weighted regression." They conclude that 

considering nonlinearities does not help point prediction. On 

the other hand, by modelling exchange rate dynamics as a 

sequence of stochastic, segmented time trends, Engel and 

Hamilton (1990) find that nonlinear dependence may be 

exploitable for predictive purposes. They show that 

stochastic, segmented trends model predicts better than a 

random walk. 

In this chapter, I compare the predictions of a simple 

random walk process, i.e., 

Pt = Pc_1 + et , where ec~N(Q, a2) ( 4 . 1 )  

with those of an ARCH-in-Mean (ARCH-M) model (Engle, Lilien, 

and Robins, 1987), Generalized Autoregressive Conditional 
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Heteroskedastic-in-Mean (GARCH-M) model (Bollerslev, 1986), 

the bilinear model (Granger and Andersen, 1978a), a Time 

Varying Parameter, model (TVP), a Time Series Segmentation 

Model (Sclove, 1983) , and a Stochastic, Segmented Trends model 

(Hamilton, 1989) below. 

The chapter is organized as follows. The next section 

describes in detail and justifies each of the nonlinear models 

considered. After this discussion, a section is devoted to 

fitting the models to the data. Some diagnostic tests on the 

residuals of the estimated models are also conducted in this 

section. Prediction and comparison of the models are taken up 

after this and the last section summarizes the chapter. 

A Look at Some Nonlinear Time Series Models 

Six nonlinear models are considered in this section. 

These models are the ARCH-in-Mean (ARCH-M) model (Engle, 

Lilien, and Robins, 1987), Generalized Autoregressive 

Conditional Heteroskedastic-in-Mean (GARCH-M) model 

(Bollerslev, 1986), the bilinear model (Granger and Andersen, 

1978a), a Time Varying Parameter model (TVP), a Time Series 

Segmentation Model (Sclove, 1983), and a Stochastic, Segmented 

Trends model (Hamilton, 1989). 

The ARCH-M and GARCH-M Models 

The ARCH-M and GARCH-M models both use a function of the 

conditional variance of a time series to explain the mean of 

its process. Consider the series Pt to be modeled as 
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APt = S + Yht1/2 + et, where et is an error term with zero mean 

and conditional variance ht = E(etzjlt.1) and I,..! is the set of 

all information available at time t. A specific form of the 

conditional variance 

Q 
ht = «o - E> (4-2) 

Jc=l 

proposed by Engle, Lilien, and Robins (1987), is known as the 

ARCH-M(q) model. Bollerslev (1986) generalized this form by 

allowing lagged values of the conditional variance, in 

addition to lagged squared residuals, to explain its 

contemporaneous value, i.e., 

hc = ao+ E P A-J + E akel-k •  < 4 - 3 >  
j" 1 ic-l 

When this form is used the model is known as the generalized 

ARCH-M model or GARCH-M(p,q) model. The parameters of both 

models satisfy the following conditions when appropriate: 

ao>°, —Of k=l, ... , q, j=l, ... ,p. 

The empirical distribution of the variables generated by 

these processes are heavy tailed, compared to the normal 

distribution. The unconditional mean and variance of an ARCH-

M and GARCH-M process are constant, equal to 

«o 
* . (4.4) 

- Ea*> 
Jc=l 

respectively, but the conditional mean and variance are time 
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p * (4.5) 
(1 " E Pj " E a*> 

j'°l k'l 

dependent as shown above. The fact that conditional variances 

are allowed to depend on past realized variances is consistent 

with the actual volatility pattern observed in most financial 

markets during both stable and unstable periods. 

ARCH and GARCH models have been sucessfully applied to 

foreign exchange rate data by Domowitz and Hakkio (1985), 

Diebold and Pauly (1988), and Hsieh (1989), and to stock 

market data by Akgiray (1989) . Engle, Lilien, and Robins 

(1987) fruitfully applied the ARCH-M to expected bond returns 

and Engle and Bollerslev (1986) used a GARCH-M model to model 

the risk premium on the foreign exchange market. 

The Bilinear Model 

The bilinear model, proposed by Granger and Andersen 

(1978a), was introduced as a simple generalization to linear 

models. This class of nonlinear models may be regarded as the 

natural nonlinear'extension to Autoregressive Moving Average 

(ARMA) processes. Just as the ARMA process is sufficiently 

general to approximate most linear series that arise in the 

real world, the introduction of the bilinear model marked the 

beginning of work in time series analysis concerned with 

finding a general nonlinear, univariate model. The bilinear 

model is not dramatically nonlinear, however the bilinear 

class of models are non-explosive and invertible and useful in 
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forecasting. Granger and Andersen (1978a) applying simple 

bilinear models to IBM daily common stock closing prices1 and 

Gabr and Rao (1981) applying a bilinear model to Canadian Lynx 

data2 both show the ability of the bilinear model to forecast. 

Maravall (1983) shows that bilinear models are able to improve 

upon the Bank of Spain's linear ARIMA forecasts of currency 

demand. 

In this chapter I consider a specific first-order 

bilinear model motivated by the following: 

In futures markets literature, it has long been accepted that 

futures prices follow a simple random walk process. That is 

Pt = Pt_x + et , where e ~N(0,a2) . 

Although I concluded that Treasury Bill futures prices contain 

a unit root, some doubt was cast on this specification in 

chapter 3. There, it was shown that et exhibits nonlinear 

dependence if Pt is modeled as a random walk. This leads me 

to believe that the specification may be more reasonable if 

the expectation of Pt at time t-1 is permitted to be a 

nonlinear function of past information. 

If a series Pt is generated by 

Pt = (expectation of Pt made at time t-1) + et 

so that et is essentially the expectation error, and if these 

1 These are closing prices for 169 trading days beginning 
May 17, 1961. 

2 This data gives the number of lynx trapped annually 
rather than the actual population. 
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expectations are a function of the most recent data available 

at time t-1, that is P,..! and et_x, of the form 

E(PtiPt-ifet-1) = gfPt-i/et.i) 

then there is no reason to believe that this function will be 

linear. One way of picking up at least part of the 

nonlinearity is to use the approximation 

g(P,e) = aP + bPe + de 

which gives a bilinear model for the series Pt. 

Note that the specified approximation allows for both "main 

effects," aP and de, and an "interaction" or "cross-impact" 

effect bPe. The first-order bilinear model that results for 

futures prices is 

pt = apt-i + bPt_ iec_! + det_r + ec, (4.6) 

where efc is the usual white noise series. 

A Time-Varying Parameter Model 

In another attempt to model nonlinearity a simple time-

varying model is used. The intuition behind its use is that 

if a market is not fully efficient, as I concluded about the 

Treasury Bill futures market in chapter 3 due to the nonlinear 

dependence found in the data, then not all of a market's 

relevant information will be disclosed by its price. If the 

price of a security does not contain all of the market's 

relevant information, then dependent upon the importance of 

the information not contained in the price, it is possible 

that the reaction of today's price to yesterday's will be 
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different across time. Hence, I propose the following model: 

Pt = PtPt.i + ec , where et ~i.i.d. (0, a2) (4.7) 

Pt = ofPC_1 + ut , where ut (O,02) 

The equation representing the evolution of /3t reflects a 

learning process on the part of market participants. 

A Time-Series Segmentation Model 

In addition to the models proposed above, there are other 

paradigms that are specifically used for nonlinearly dependent 

variables and may explain the nonlinear dependence found in 

futures prices. One model that can be easily imagined is a 

time-series segmentation model which hypothesizes that the 

changes in prices conform to one of two processes where the 

processes are dependent upon particular states of nature. An 

explanation for wh'y this model may be appropriate for futures 

prices is the same as the explanation given for the 

appropriateness of TVP model though in the segmentation model 

the dependence of today's price on yesterday's is more 

systematic. 

The model that I use is a specific form of the model that 

Sclove (1983) proposed. I assume that there are two states of 

the world, y=l,2, and the changes in futures prices follow a 

second-order autoregressive process under each state, i.e., 

A Pt = ctyAP^ + PyAP t_2 

Changes in futures prices are modeled because an assumption of 
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the model is that the variable under analysis is covariance-

stationary. The first-order autoregressive parameter is 

assumed to be positive and negative under states 1 and 2 

respectively and the second-order parameter is not constrained 

to be either positive or negative under either state. The 

model assumes that the residuals from the autoregressive 

processes under each state are normal processes with constant 

and equal variances between states. 

The algorithm begins by setting initial values of each of 

the autoregressive processes and setting the transition 

probabilities, pcd, where c and d indicate the previous and 

current state respectively, equal to 1/2. Also, the 

probability that the initial state of the world, f(Yi)/ is 

state 1 is set to 1/2. With these initial values, the first 

state of the worl'd is estimated by maximizing f (Yi) f (Px j Yi) < 

where 

2 

f{pAyx=c) = (27to2)-1/2 exp(—^2) (4,8) 

2o2 

and 

"tc = Pt-WcPt-1 + 6c) 

if estimating the first-order autoregressive case. From the 

second state onward the states of the world are estimated by 

maximizing 
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(PclYt) • (4.9) 

Once the states* are labeled, the parameters from the 

autoregressive processes can be estimated by separating the 

data according to the two states and maximizing the likelihood 

function: 

L = ( 2 - k o 2) ~(r-1)/2exp (—2L) (4.10) 
2o 

where 

= £ [pt " <<MVi + 6X)]2 + £ [Pt - + S2) ]2. 
Yc=l Yc=2 

The transition probabilities can be estimated by ncd/nc, where 

ncd indicates the number of times the state changes from state 

c to state d and nc indicates the number of times the process 

is labeled by state c. With new transition probabilities and 

new autoregressive parameter estimates, the states, y, may be 

reestimated. Finally when no observation changes labels from 

the previous iteration, the algorithm stops. 

The estimation procedure is based on what the likelihood 

function would have been if states were observable. 

Implicitly then, it is assumed that the actual historical 

states of nature are those that maximize the joint likelihood 

of the changes in futures prices and states which produce the 

prices. 
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A Stochastic. Segmented Trends Model 

Hamilton (1989) introduced another approach to modeling 

changes in regime. The stochastic specification is similar to 

that explored by Sclove (1983) above, although the statistical 

approach is quite different. The general idea is to decompose 

a nonstationary tdme series into a sequence of stochastic, 

segmented trends. The model postulates the existence of an 

unobserved state or regime variable, St, that is presumed to 

depend on past realizations of APt and S only through St-X. 

When St=0, the observed change in the futures price is 

presumed to have been drawn from a N(n0ro02) distribution, 

whereas when St=l, APfc is distributed NfMi/CFi2) ; thus when St=0, 

the trend in the futures price is n0, whereas when St=l, the 

trend is n1. Discrete shifts in the parameters of the 

distribution of futures prices are viewed as the outcome of a 

first-order, discrete-state Markov process which governs the 

transition between states, 

p (Sfc=0 J Qt-i=0) = pn 
p(St=l|St.1=0) = 1-Pu (4.11) 
p (St=0 | St.1=l) = 1— p22 
P (St=l 1 St_1=l) = P22 • 

Given the parameters of the distribution, where it is 

assumed that the first and second moments completely describe 

the distribution, and a Markov process describing the 

transition probabilities from one state of nature to another, 

the state to which the segment of the series belongs is 

determined. 
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Hamilton's statistical approach differs from Sclove's in 

that the actual marginal likelihood function of the variable 

is found and then maximized with respect to the population 

parameters. The algorithm used to optimize the likelihood 

function relies on the EM principle of Dempster, Laird, and 

Rubin (1977) and is known as the EM algorithm.3 The advantage 

of the EM algorithm over other algorithms developed for 

numerical optimization is that it is robust to initial 

values.4 Once the optimal values of the parameters are found, 

the parameters along with the data are used to draw the 

statistical inferences about the unobserved states. Recall 

that Sclove (1983) calculated what the likelihood function 

would have been if the regimes were observable, and then 

assumed that the actual historical states were those that 

would make the joint likelihood function of the changes in 

futures prices along with unobserved states as large as 

possible. 

I use Hamilton's method to estimate two different model 

specifications. In the first specification, futures price 

changes are assumed to follow an autoregressive process as in 

3 The EM algorithm is an iterative procedure composed of 
two steps, the expectation step (E-step) and the maximization 
step (M-step). Hence, its name. 

4 The EM algorithm also avoids problems that are 
associated with likelihood functions of switching regression 
models which are characterized by having many local maxima, 
singularities, and boundary problems. 
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Sclove (1983) . In the second model, price changes are assumed 

to be independent as in Engel and Hamilton (1990). 

Estimation of the Models 

In this section I give the results from the estimation of 

the models hypothesized in the section above. Because I will 

consider out-of-sample prediction in the next section, the 

last 50 observations in every data set are not used for 

estimation. 

The ARCH-M and GARCH-M Models 

I started by fitting the ARCH-M(p) model to the five 

contracts. To fit a model, the value of p, the lag in the 

variance equation, is prespecified. The log likelihood 

function, given by 

where 0l = (Y,aO/°:i/. . . ,ap) and the constant term omitted, is 

then maximized with respect to (f>. Maximization of the 

likelihood function is carried out using the Berndt, Hall, 

Hall, Hausman (1974) numerical optimization technique. For 

large samples, such as the data representing a Treasury Bill 

futures contract, choice of the initial values of the 

parameters is not crucial. 

T 

L ( 4 > )  =  L C ( < J > )  (4.12) 
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Several specifications were tried using one to five lags 

in the variance equation and using the standard deviation and 

the variance in the mean equation. To choose the appropriate 

specification a standard likelihood ratio statistic was used. 

If L(0n) and L(<pa) are the maximum likelihood function values 

under the null and alternative hypothesis respectively, then 

the statistic 

-2 [L(<t>n) - L(*a)] ~ %2(k) (4.13) 

where k, the degrees of freedom, is the difference in the 

number of parameters under the null and the alternative. 

Table 4.1 gives the results of fitting the ARCH-M model 

to the data. The t-statistics are in parentheses. In 

addition to estimating the models, several diagnostic tests 

were conducted. 'First, a K-2 degree of freedom likelihood 

ratio test, where K is the number of parameters estimated in 

the model, for the null hypothesis that the endogenous 

variable follows a normal model with constant mean and 

variance is conducted. This test is applied as a necessary 

condition for applying the ARCH-M model to the data. Second, 

both the coefficients of skewness and kurtosis of the 

standardized residuals, i.e., et/7ht, are given as an informal 

check of goodness of fit. If the model fits well, then the 

standardized residuals should satisfy the assumptions made 

before estimation. With respect to the their third and fourth 

central moments, this means that the coefficients of skewness 
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Table 4.1 

ARCH-M(p) Model Estimates 

Parameter 8£ (3) 88(6) 8E (9) 88(12) 89(3) 

S -0. 048 — 0. 055 — — 

(-5. 23) (4. 44) 

Y 0. 641 0. 037 -0. 637 -0. 015 -0. 011 
(6. 50) ( •  822) (-4. 65) (-• 288) ("• 199) 

« o 0. 004 0. 004 0. 006 0. 005 0. 005 
(7. 93) (8. 76) (10. 90) (9. 24) (10. 81) 

<*i 0. 008 0. 060 0. 483 0. 117 0. 129 
(0. 320) (1. 89) (11. 90) (2. 32) (2. 52) 

a2 0. 057 0. 049 0. 048 0. 051 0. 033 
(1. 86) (2. 03) (1. 11) (2. 10) (1. 95) 

0. 187 0. 117 — — 0. 092 0. 073 
(3. 43) (2. 14) (1. 65) (1. 73) 

a, 0. 444 0. 314 — — 0. 366 0. 336 
(7. 12) (8. 89) (6. 74) (6. 09) 

LR (K-2) 170. 57 124. 45 •
 

CO 

922 121. 29 117. 16 

Skewness -0. 115 -0. 486 0. 233 0. 185 0. 341 

Kurtosis 3 . 867 8. 179 7. 544 5. 989 6. 307 

L-Bi 26. 29 8. 630 9. 731 8. 665 9. 085 

l-b2 18. 29 4. 881 16. 71 8. 453 5. 726 

and kurtosis of the standardized residuals should be 

approximately equal to 0 and 3 respectively. Lastly, two 

Ljung-Box statistics for twelfth-order serial correlation, 

both x2(12), are conducted. The first tests the normalized 

residuals and the second tests the squared normalized 

residuals. They are denoted by L-Bi and L-Bz respectively. 
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The purpose of these last two tests is to see whether or not 

after modeling the residuals contain any linear dependence or 

any ARCH effects. If these tests fail to reject the null, 

then they are indicators that the ARCH-M models fit the data 

well. 

In every data set, the likelihood ratio tests demonstrate 

that the APt does not have a constant mean and variance, that 

is, APt is better described by a model that allows for 

variation in the mean and variance of the process. Again, 

for every data set, the skewness coefficient is not very 

different from that found under a normal distribution, but the 

coefficient of kurtosis is somewhat high indicating that the 

standardized residuals have distributions that have very heavy 

tails. Although it is assumed that the standardized residuals 

should resemble standardized normal random variables, the 

ARCH-M model is not designed to model dependence found in 

moments greater than the second-order. Lastly, in every data 

set, the Ljung-Box statistics are insignificant at the 5% 

level of significance except for the test of linear dependence 

in contract 88(3). 

A natural generalization to the ARCH-M model is the 

GARCH-M model. As in the ARCH-M model, several lag structures 

were tried for the variance equation and for every lag 

structure tried, the mean equation was estimated with and 

without a constant term. The GARCH-M is estimated the same 
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way as the ARCH-M model except that <p' = (y ,a0lctlr . . . ,<xp, 

f3lr...,/3q) where the /?'s are the coefficients on the lagged 

ht's in the variance equation. Once again, to find the 

correct model specification for the data the likelihood ratio 

test described above was used. For every data set, the GARCH-

M( 1,1) specification appeared to fit the data best. In 

addition, for every data set, a mean equation without a 

constant term seemed to be more appropriate than a mean 

equation with one. When compared to the ARCH-M model, a mean 

equation without a constant term may appear inconsistent. 

However, because the GARCH-M contains a lagged variance term 

in the variance equation, the conditional variance at time t 

may contain the information that the constant term proxied for 

in the ARCH-M specification. Hence, the constant term may not 

be necessary in tlje GARCH-M specification. 

Table 4.2 gives the results of fitting the GARCH-M model 

to the data. The t-statistics are in parentheses. In each 

data set the likelihood ratio tests again indicate that the 

APt is described better by a model that allows for variation 

in the conditional mean and variance of the process over time. 

The coefficients of skewness are slightly higher than those 

reported under the ARCH-M models, but they still are not too 

far from what is acceptable for normal processes. Again, the 

coefficients of kurtosis are somewhat high. This may be for 

the same reason mentioned above. For every data set, the 
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Table 4.2 

GARCH-M(p,q) Model Estimates 

Parameter 88(3) 88(6) 88(9) 88(12) 89(3) 

Y 0.017 
(.343) 

0.019 
(.378) 

-0.031 
(-.610) 

-0.043 
(-.906) 

-0.050 
(-1.06) 

<*o 0.0003 
(2.40) 

0.0004 
(2.87) 

0.0009 
(2.83) 

0.0013 
(3.89) 

0.0014 
(3.67) 

0.779 
(26.1). 

0.836 
(40.5) 

0.731 
(14.1) 

0.696 
(12.3) 

0.6903 
(11.2) 

<*i 0.221 
(8.95) 

0.128 
(11.0) 

0.195 
(7.45) 

0.167 
(7.63) 

0.139 
(8.67) 

LR(K-2) 148.97 106.44 94.973 102.37 95. 66 

Skewness -0.172 -0.126 0.465 0.487 0.706 

Kurtosis 6.129 10.86 8.510 8.411 9.590 

L-Bj 9.15 6.86 7.980 7.955 8.438 

l-b2 21.43 6.27 8.765 6.914 6.174 

Ljung-Box test statistics are insignificant at the 5% level of 

significance. 

The Bilinear Model 

Next, the data were modeled by a bilinear process. As 

Subba Rao (1977) pointed out, the problem of estimating the 

parameters of a bilinear model does not differ, in principle, 

from that of estimating the parameters of a linear model. 

Thus, if one assumes that et is a Guassian process, then given 

observations on the series for t=l,...,T, the likelihood 

function may, for large T, be written approximately as, 

where 0 denotes the set of parameters (a, b, d) and where, for 
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T 

L(0) = exp[^ ̂e2fc] (4.14) 
2Og c-i 

each value of 0, et may be computed recursively from 

et = Pt - aPt_^ - bPt,xet,x - det.x. (4.15) 

The maximum likelihood estimate, 6, is therefore obtained by 

minimizing 

with respect to each element of 0. Given a set of initial 

estimates, a standard Newton-Raphson iterative technique 

may be used to find the value, 6, which minimizes V(0) . 

Several initial values were chosen for the parameters; 

however, for the data sets considered in this paper, they did 

not significantly change the final estimates of a, b, and d. 

In addition, the model gave estimates for the parameter a that 

were very close to 1. Hence, it was considered parsimonious 

to instead estimate the model 

IPt ~ Pt-1> = *>Pt_iet.x + det.x + et . 

Thus, the estimates and in parentheses their corresponding t-

statistics of the parameters b and d are given in table 4-3. 
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Table 4.3 

Bilinear Model Estimates 

Parameters 88 (3) 88 (6) 88(9) 88(12) 89 (3) 

b -0.081 
(-1.210) 

-0.078 
(-0.968) 

-0.014 
(-0.175) 

0. 038 
(0.556) 

-0.059 
(-0.682) 

d 7.573 
(1.222) 

7.273 
(0.972) 

1.318 
(0.177) 

-3.609 
(-0.566) 

5.398 
(0.685) 

skewness 1.457 0.561 0.960 1.406 1.275 

kurtosis 16.991 19.642 18.038 20.149 19.799 

W 1.719 1.509 • 1.146 1.139 1.376 

In every data set, the parameter estimates are 

insignificant at the 5% level of significance. However, the 

model did appear useful in that a joint F-test for model 

significance was only marginally insignificant. 

As for the residual diagnostics, W is a statistic formed 

by considering a second order covariance analysis on the 

squares of the residuals. It is suggested as a test for 

independence by Granger and Anderson (1978b), and is 

asymptotically distributed as normal with mean zero and 

variance unity. This test, as opposed to other tests for 

serial correlation, is used because standard tests tend to 

pick up the functional relationship of the residuals specified 

by the model. The results indicate that the test cannot 

reject the hypothesis that the residuals are independent. 

However, under the assumption that the residuals are Gaussian, 

the coefficients of skewness and kurtosis appear problematic. 
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Overall, it is quite clear that the bilinear model is 

dominated by the unit root process of the data.5 However, in 

the next section the estimated models will also be judged by 

looking at their predictive ability. 

A Time-Varvincr Parameter Model 

Next, two time-varying parameter models were estimated. 

To fit both of these models the following procedure was used: 

Given the model specified in equation (4.7) let bt be the 

estimate of /3t and St an estimate of its variance, i.e., 

var(bt)=St. At time t, the observation Pt is known. An 

estimate of (3t, therefore, from the first equation 

pt = Ptpt-i + et 

is (Pt-Pt-^/PVi or simply Pt/P,..! with variance a2/P2fc-i* Also, 

from the second equation 

Pt = aPt-i + ut 

an estimate for /?fc is a^b,^, where a is the estimate of a, and 

its variance is (a^^+G2) . 02 is added to because of the 

error term ut. The time-varying parameter estimate of (3t is 

found by combining these two estimates with weights in inverse 

proportion to their variances, 

5 Other specifications were fit and in all cases the 
models were dominated by the unit root component of the data. 
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bt = [ + ^ + PcPt~1 ] 
c a2Sc_x + e2 o2 a2St_x + e2 o2 

(4.16) 

where the variance St is given by 

P ̂  e" = r 1 + £-3-1 -1 
c a2^ + e2 a2 

These recursive relations yield estimates that are equivalent 

to those given by the Kalman Filter. To begin the recursions 

initial estimates are needed. The initial estimates are 

be = PtPt-i _ Pt 

pt2-l Pt-1 

02 = ^E<pt-ve.i): 

2 

- -

02 - - abt-J* 
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From these initial estimates the first set of iterations are 

conducted. Given bx, and after a new series of bt's are 

iterated, new estimates of a2, $2, a, and Sx are constructed. 

With these new estimates, a new series of bt's are 

constructed. This procedure continues until the new 

estimates are not different from the old or the series {bt} 

does not change. 

The first model fit was the one given above and the 

second constrained a=l. In both cases, when the series {bt} 

converged, the values bfc all hovered around 1 with a variance 

at each time period roughly equal to 2.49943D-12. Given this 

result two different tests for stability were conducted. In 

both tests the null hypothesis is that the parameters of the 

model are time invariant. The first test has an alternative 

hypothesis of unstable regression coefficients and is 

conducted by splitting the entire sample into several 

arbitrary nonoverlapping subsamples and calculating the 

between-group-over-within-groups ratio of mean squares. Under 

the null hypothesis of stable coefficients, the test statistic 

is distributed F(p-1, T-p) since there is only one regressor 

in the mean equation, Pt = /3tpt-i + et/ an(^ P i-s the number of 

nonoverlapping subsamples. Test results for my data sets 

could not reject the null hypothesis of stable coefficients. 

The second test had the same null, but was against the 

alternative hypothesis of random-walk coefficients. This more 

specific test was conducted by considering the heteroskedastic 
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form that ordinary least squares regression residuals have 

under an alternative hypothesis of random walk coefficients. 

Knowing that the form depends on t'P,..!, one can follow Breusch 

and Pagan (1979) , by using one half times the explained sum of 

squares from a regression of ezt/az on t'P2,..!, where this 

statistic is x2(!) • This statistic was also insignificant at 

the 5% level of significance in all data sets. Given the poor 

fit of the TVP model to futures data, I do not report the 

results nor use the model for predictive purposes. 

A Time-Series Segmentation Model 

The procedure used for estimating Sclove's (1983) model 

was described in the section above. From a first-order 

autoregressive representation to a third-order one, this model 

failed to conclude that the data were produced by two 

different regimes or states—in all cases, the algorithm 

converged to one state of the world. On the surface this 

result would not appear as bad if the parameters of the single 

autoregressive representation were stable. However, when 

estimating the model using several different combinations of 

initial estimates for the two autoregressive specifications 

the parameter estimates varied terribly. For each combination 

of initial estimates, the parameter estimates were different. 

For this reason, this model was abandoned and not used for 

predictive purposes. 
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A Stochastic. Segmented Trends Model 

The concept behind estimation of the model is 

straightforward. Six population parameters determine the 

probability law for APt. These parameters are given by 0 = 

(Mi/M2/crirOr2/Pn/P2z) • The unconditional distribution of the 

state of the first observation, pfs^lJB) = p, where 

o _ (3- ~ p22) • . 18) 
P (1 - pll) + (1 - p22) 

The joint probability distribution for the sample size T and 

unobserved states s is given by 

p(APx, . . . , APr, s1, . . . , sr;0) = p(APT\sT;Q) * p {sT\ST_^; 0) 

* p(APr.1! sr_1;0)p(sT_1! sT.2;0) (4.19) 

P(AP11 s1;0)p(s1;0) . 

The sample likelihood function is then just the summation of 

the joint probability distribution over all possibilities 

(s^, • • • , sj) , 3.* e • , 

2 2 

. . . £ p(APlf . . . APr, s1# . . . , ST;0) . (4.20) 

A simpler way to evaluate the. sample likelihood function then 

the 2t summations that it would ordinarily require is to use 

the algorithm provided by Hamilton (1989). Using this 

algorithm and incorporating a Bayesian prior, following 

Hamilton (1988) , for the parameters of the two states, the 
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parameter estimates are given by the following equations: 

T 

£ APt*p{st=j i  APX ,  .  .  .  ,  AP r ;8) 

? (4-21) 

v + ^p(s t=j!AP1 ,  .  .  .  ,  AP r ;0) 
t = l 

= t ? - ] * 

a + ( l /2)£)p(s t=j!  AP^ .  .  . ,  AP r :0) 

[p + (1/2) ]T (apc - p.,)2  * p(s t=j!  apt, . . . , Apt ;0) + (1/2) *v* (p.^-) 2 ]  
C=1 

Pn = -z — 
J^p(s t=l,s t_1=l!  APX, . . . , APt ;0) 

J]p(s t .1=i:  AP1 (  .  .  .  ,  AP r ;0) + p -  p(s1 = l i  AP1 #  .  .  .  ,  AP r ;0) 
t=2 

P22 = ~ 

^2 p (s t=2, s t_1=2 !APX ,  .  .  .  ,A P r ;0) 

5^p(sc_1= 2 !  APX ,  .  .  .  ,  APT ;0) + p -  p(s1=l!  APX ,  .  .  .  ,  APT ;0) 
t=2 

The Bayesian prior, incorporated by using the parameters a, (3, 

and v, is used to avoid singularities of the likelihood 

function. Note that the maximum likelihood estimates are just 

a special case of the diffuse prior a=(3=v=0 and the use of 

priors that are nonzero shifts the maximum likelihood 
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estimates in the direction of concluding that there is no 

difference between the two regimes. 

Given this estimation procedure, table 4.4 provides the 

results of applying Engel and Hamilton's (1990) model to the 

futures price data. I encountered the same problem with 

Hamilton's model as that found with Sclove's model when 

specifying different autoregressive representations under the 

hypothesized two states of the world. Hence, it appears that 

it is not the estimation procedure, but the specification 

which does not appeal to the data. One reason for the failure 

of both models may be that they require stationary variables. 

Recall that figures 6-10 show that, for these contracts, 

changes in futures prices occur in the opposite direction very 

frequently. This would lead one to believe that a negative 

first-order autoregressive representation would dominate a 

positive one. Also, the levels shown in figures 1-5, exhibit 
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Table 4.4 

Stochastic, Segmented Trends Model Estimates 

88 (3) 88(6) 88 (9) 88(12) 89(3) 

Mi .07159 .03715 .15040 .12420 .10663 
( .10876) ( .18825) ( .23603) ( .22863) ( .23041) 

.00181 — .00117 -.00482 -.00414 — .00329 
( .00501) ( .00544) ( .00579) ( .00503) ( .00499) 

Pn .84686 .82381 .80862 .81461 .79933 
( .10349) ( .16311) ( .17772) ( .16656) (• 18167) 

p22 .99395 .99350 .99645 .99689 .99664 
( .00437) ( .00479) ( .00362) ( .00318) ( .00351) 

* i2  .18373 .32440 .34941 .34589 35304 
( .07435) ( .17664) ( .20679) ( .20153) ( .20617) 

°22  .00997 .01086 .01139 .01041 00999 
( .00075) ( .00084) ( .00088) ( .00074) ( .00073) 

PsN  .0041 .0017 .  0008 .0491 .0007 

P .0380 .0356 .0182 .0165 .0165 

Psfl is the conditional probability P(StyMl|APty,...,P;i) whore N=T-50 and T is the number of observations 

in a given contract. The standard errors are in parentheses. 

sporadic movements even though the series is generally moving 

upward or downward or appears to have a •long swing1. These 

sporadic movements are guite different than what Hamilton 

encountered when* modeling exchange rates. Engel and 

Hamilton's (1990) model was able to fit the data somewhat 

better. By not specifying an autoregressive representation, 

this form of the model was able to distinguish between two 

different states. However, even though Hamilton's (1990) 

model was able to fit the futures data better than his other 

models, ninety-five percent of all observations in all of my 

data sets were distinguished as coming from the second state 
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of the world. Hence, this model still does not seem fully 

appropriate for financial futures price data. 

By looking at table 4.4, the means of the distributions 

Ijl1 and ii2 are not significant at conventional sizes in any of 

the data sets. This indicates that the trend that the data 

follows at any given time period is not well specified. Also, 

in every contract, the variance for the first distribution is 

not significant. Lastly, the conditional probability that the 

last observation's state is 1 and the probability that the 

first state is 1 are both very small. This yields further 

evidence that the model may not be appropriate for the data. 

Prediction and Comparison of the Estimated Models 

For each of the estimated models, prediction is carried 

out for a 5-day horizon up through a 50-day horizon. In 

total, 10 predictions will be made for each model. The mean 

square error (MSE) of prediction and the Theil U statistic for 

each horizon is first compared to the MSE of prediction and 

the U statistic of the simple random walk model. Then, the 

MSE of prediction and the U statistic of each of the estimated 

models is compared against one another. The criterion for 

choosing the best model is simple: The lower the MSE of 

prediction and the lower the U statistic, the better the 

prediction, and, the better the prediction, the better the 

model. 
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The MSE of prediction is formally defined as: 

1 n pr -A 
MSE = ±Y [ c fc]2 (4.22) 

n t-i &t-i 

where Prt is the predicted value at time t, At is the actual 

value at time t, and n is forecast horizon. It is the 

simplest measure of forecast accuracy and it is the basis for 

all other measures. The Theil U statistic, a function of the 

MSE is given by: 

V* = 

\ 

(APre - AAt)2 
atml (4.23) 

i t  11 c=i 

where APrt is the first difference of the predicted values, AAfc 

is the first differences of the actual values, and n is the 

forecast horizon. 

The MSE is an overall measure of forecast performance 

that is based purely on the forecast errors. On the other 

hand, the Theil U statistic given in terms of differences, is 

used to measure the model's ability to track turning points in 

the data. By using both of these measures the best model 

should be detected. 

Ten tables are given below, one for each forecast 

horizon. The first horizon represents the first five days 

immediately following the estimation period, the second 

represents the first ten days immediately following the 
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estimation period, the third the first fifteen days, and so 
ft 

forth. The longest forecast horizon analyzed is fifty trading 

days. 

Table 4.5 

Prediction Under the First Forecast Horizon 

mse x 106 u—statistic 

ran.walkx 2.470 2.698 
ran.walk2 0.340 1.107 
ran.walk3 3.590 1.065 
ran. walk,, 0.154 1.462 
ran.WALK5 2.443 1.397 

arch-mx 2.971 2.769 
arch-m2 0.335 1.110 
arch-M3 4.409 1. 066 
arch-mi, 0.159 1.485 
arch-m5 2.443 1.398 

garch-mi 2.454 2.704 
garch-m2 0. 333 1.108 
garch-M3 3.556 1.065 
garch-m4 0.164 1.462 
garch-M5 2.423 1.400 

bilinear! 2.442 2.659 
bilinear2 0.368 1.095 
BILINEAR3 3.581 1. 068 
bilinear,, 0.168 1.515 
bilinear5 2.441 1.406 

seg.trendsi 2.563 2 . 686 
seg.trends2 0.360 1.099 
seg.TRENDS3 3.248 1.055 
s eg. trends 0.173 1.462 
seg.trends5 2.328 1.397 

Note that the subscripts on each of the models indicate the model for contracts 88(3), 

88(6) 89(3) respectively. 
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Table 4.6 

Predict ion Under the Second Forecast Horizon 

MSE x 106  U-STATISTIC 

ran.walk! 2.570 1.770 
ran.walkz 0.193 1.327 
ran.walk3 2.179 1.593 
ran. walk,, 0.182 1.303 
ran.walk5 1.767 1.427 

arch-mi 2.627 1.693 
arch-m2 0.191 1.330 
arch-m3 2.622 1.704 
ARCH-M4 0.184 1.312 
arch-m5 1.768 1.428 

GARCH-Mi 2.581 1.771 
garch-m2 0.190 1.327 
garch-m3 2.183 1.597 
garch-m^ 0.189 1.301 
garch-m5 1.751 1.428 

BILINEARX  2.559 1.764 
BILINEAR2  0.203 1.281 
bilinear3 2.172 1.589 
BILINEAR* 0.192 1. 322 
bilinear5 1.763 1.431 

SEG.TRENDSX  2.465 1.767 
SEG.TRENDS2  0.218 1.324 
SEG.trends3 2.337 1.595 
SEG.TRENDSA  0.204 1.296 
SEG.trends5 1.686 1.426 

Note that the subscripts on each of the models indicate the model for contracts 88(3), 

68(6),...,89(3) respectively. 
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Table 4.7 

Prediction Under the Third Forecast Horizon 

mse x 106 u-statistic 

ran.walki 2.366 1.631 
ran. walk2 0.313 1.301 
ran. walk3 1.553 1.596 
ran. walk*, 0.181 1.205 
ran.walk5 1.260 1.391 

arch-mi 2.586 1. 551 
arch-m2 0.315 1. 304 
arch-m3 1.998 1.703 
arch-m* 0.182 1.211 
arch-m5 1.260 1.393 

garch-mi 2.362 1.631 
garch-m2 0.314 1.300 
garch-m3 1.552 1.600 
GARCH-ma 0.183 1.204 
garch-m5 1.244 1.392 

bilineari 2.360 1.628 
bilinear2 0.323 1.265 
BILINEAR3 1.546 1.592 
bilinear,, 0.188 1.223 
BILINEAR5 1.253 1. 395 

seg.trends! 2.559 1. 629 
seg.trends2 0.285 1.298 
seg.TRENDS3 1.797 1.597 
seg. trends,, 0.195 1.199 
seg.TRENDS5 1.257 1.391 

Note that the subscripts on each of the models indicate the model for contracts 88(3), 

8 8 ( 6 ) 0 9 ( 3 )  r e s p e c t i v e l y .  
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Table 4.8 

Predict ion Under the Fourth Forecast Horizon 

MSE x 106  U-STATISTIC 

ran. walki 1.856 1. 673 
ran. walkz 0.349 1.470 
ran. walk3 1.443 1.486 
ran. walk,, 0.256 1.105 
ran.walk5 1.072 1.345 

arch-mi 2.079 1.657 
arch-m2 0.349 1.475 
arch-m3 2.005 1.579 
ARCH-M;, 0.258 1.109 
arch-m5 1. 072 1.346 

GARCH-Mx 1.851 1.673 
GARCH-MZ  0.348 1.469 
garch-m3 1.436 1.489 
GARCH-Ma  0.259 1.104 
garch-m5 1.062 1.346 

BILINEARi 1.851 1. 668 
BILINEAR2  0.346 1.409 
bilinear3 1.436 1.482 
BILINEAR;, 0.269 1.119 
BILINEAR5  1.066 1.348 

SEG.TRENDS :  2.103 1.670 
SEG.TRENDS2  0.405 1.471 
SEG.trends3 1.563 1.484 
SEG.TRENDS4 0.381 1.108 
SEG.TRENDS5  1.209 1.343 

Note that the subscripts on oach of the models indicate tho model for contracts 88(3), 

8 8 ( 6 ) 8 9 ( 3 )  r e s p e c t i v e l y .  
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Table 4.9 

Prediction Under the Fifth Forecast Horizon 

• mse x 106 u-statistic 

ran.walk: 1.654 1.638 
ran. walk2 0.389 1.508 
ran. walk3 1.171 1.558 
ran. walk,, 0.484 1.339 
ran.walk5 0.956 1.345 

arch-mi 1.802 1.598 
arch-m2 0.390 1.510 
arch-m3 1.688 1.661 
arch-m^ 0.485 1. 339 
arch-m5 0.955 1. 346 

garch-mi 1.651 1.638 
garch-m2 0.391 1.508 
garch-m3 1.164 1.563 
garch-m/( 0.491 1.335 
garch-m5 0.941 1.346 

bilineari 1.649 1.632 
bilinearz 0.385 1.439 
BILINEAR3 1.164 1. 554 
bilinear4 0.495 1.325 
bilinear5 0.947 1. 350 

seg.trends! 1.898 1. 636 
seg.trends2 0.392 1.508 
seg.TRENDS3 1.583 1.560 
seg.trends^ 0.843 1.340 
seg.trends5 1.094 1.345 

Note that the subscripts 1,...,5 on each of the models indicate the model for contracts 68(3), 

68(6),...,89(3) respectively. 
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Table 4.10 

Prediction Under the Sixth Forecast Horizon 

MSE x 106 U-STATISTIC 

ran.walki 1.555 1.666 
ran. walkz 0.388 1.484 
ran.walk3 1.057 1.560 
ran. walk,, 0.423 1. 348 
ran.walk5 0.811 1.342 

arch-mi 1.711 1.639 
ARCH-M2 0.388 1.485 
arch-m3 1.530 1.656 
arch-m4 0.424 1.348 
arch-m5 0.810 1.343 

GARCH-Mi 1.553 1.666 
garch-m2 0.389 1.484 
garch-m3 1.053 1.564 
garch-m* 0.427 1.344 
garch-m5 0.798 1.343 

BILINEARX 1.548 1.658 
bilinear2 0.384 1.423 
BILINEAR3 1.052 1.557 
BILINEAR* 0.431 1.335 
BILINEARS 0.803 1.346 

SEG.TRENDSx 1.844 1.664 
SEG.TRENDS2 0.453 1.485 
SEG.TRENDS3 1.847 1.563 
SEG.TRENDS* 0.867 1.342 
SEG.TRENDS5 1.088 1.397 

Note that the subscripts on each of the models indicate the model for contracts 88(3), 

8 8 ( 6 ) 8 9 ( 3 )  r e s p e c t i v e l y .  
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Table 4.11 

Predict ion Under the Seventh Forecast Horizon 

MSE x 106  U-STATISTIC 

RAN.WALIQ 1.410 1.665 
RAN. WALKZ 0.469 1.481 
RAN. WALK3 4.191 1.763 
RAN. WALKA 0.399 1.320 
ran.walk5 0.743 1. 341 

ARCH-MI 1.533 1. 625 
arch-m2 0.469 1.480 
arch-m3 5.433 1.883 
ARCH-MZ, 0.399 1.320 
ARCH-M5 0.743 1.342 

GARCH-MI 1.407 1.665 
garch-m2 0.471 1.481 
garch-m3 4.211 1.757 
GARCH-MA 0. 399 1.317 
garch-M5 0.735 1.342 

BILINEARI 1.402 1.656 
bilinear2 0.464 1.422 
bilinear3 4.205 1.755 
BILINEAR,, 0.404 1.307 
bilinear5 0.737 1.346 

SEG.TRENDS! 1.779 1.663 
SEG.TRENDS2 0.501 1.481 
SEG.trends3 5.215 1.763 
SEG. TRENDS,, 0.878 1.319 
SEG.trends5 1.303 1.342 

Note that the subscripts 1,...,5 on each of the models indicate the model for contracts 88(3), 

88(6),...,89(3) respectively. 
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Table 4.12 

Prediction Under the Eighth Forecast Horizon 

MSE x 106 u-statistic 

ran.walki 1.279 1.653 
ran.walk2 0.569 1.426 
ran. walk3 3.757 1.752 
ran. walk,, 0. 390 1.310 
ran.walk5 0.711 1.345 

arch-mi 1.429 1.622 
arch-m2 0.569 1.426 
arch-m3 4.897 1.871 
arch-m* 0.390 1. 309 
arch-m5 0.711 1.346 

garch-mi 1.276 1.653 
garch-mz 0.571 1.426 
garch-m3 3.776 1.757 
garch-m;, 0. 394 1.307 
garch-m5 0.703 1.346 

bilineari 1.274 1.644 
bilinear2 0.561 1.379 
BILINEAR3 3.770 1.755 
bilinear*, 0.399 1.298 
BILINEAR5 0.706 1. 350 

SEG.TRENDS! 1.771 1. 651 
SEG.TRENDS2 0.641 1.426 
SEG.TRENDS3 5.145 1.752 
SEG.TRENDS< 1.231 1. 311 
SEG.TRENDS5 1.404 1.344 

Note that the subscripts 1,.. 
88(6),...,89(3) respectively. 

, 5 on each of the models indicate the model for contracts 88(3), 
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Table 4.13 

Prediction Under the Ninth Forecast Horizon 

mse X 106 u—statistic 

ran. wal^ 1.247 1.625 
ran.walk2 0.512 1.470 
ran. walk3 3.352 1.755 
ran. walk,, 0.439 1.256 
ran.walk5 0.665 1.333 

arch-mi • 1.418 1.600 
arch-m2 0.513 1.469 
arch-m3 4.419 1.874 
arch-mi, 0.439 1.255 
arch-m5 0.665 1.334 

garch-mx 1.242 1.625 
garch-mz 0.571 1.760 
garch-m3 3.366 1. 065 
garch-m* 0.438 1.254 
garch-m5 0.654 1.334 

bilinear! 1.243 1.614 
bilinear2 0.507 1.415 
BILINEAR3 3.362 1.758 
bilinear* 0.447 1.242 
bilinear5 0.658 1.338 

seg.trends! 1.933 1.624 
seg.trends2 0.600 1.470 
seg.TRENDS3 5.091 1.756 
seg.trends* 1.280 1.256 
seg.trends5 1.454 1. 333 

Note that the subscripts 1 5 on each of the modeLs indicate the model for contracts 88(3), 

88(6)....,89(3) respectively. 
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Table 4.14 

Prediction Under the Tenth Forecast Horizon 

mse x 106 u-statistic 

ran. walki 1.164 1.626 
ran. walkz 0.470 1.470 
ran. walk3 3.018 1.755 
ran. walk,, 0.448 1.252 
ran.walk5 0. 638 1. 326 

arch-mi 1.346 1.600 
arch-mz 0.471 1.469 
arch-m3 4.011 1.874 
arch-m*, 0.447 1.251 
arch-M5 0.637 1.327 

garch-m], 1.159 1.626 
garch-mz 0.472 1.469 
garch-M3 3.031 1.759 
garch-ma 0.444 1.251 
garch-M5 0.625 1.327 

bilineari 1.160 1.612 
bilinear2 0.466 1.414 
BILINEAR3 3.027 1.758 
bilinear*, 0.456 1.239 
bilinear5 0.630 1.332 

seg.trends! 1.957 1.624 
seg.trends2 0.580 1.470 
seg.TRENDS3 5.271 1.755 
seg. trends*, 1.407 1.254 
seg.trends5 1.544 1.326 

Note that the subscripts 1,.. ., 5 on each of the models indicate the model for contracts 88(3), 

88(6) 89(3) respectively. 

When compared to the random walk, the arch-m model 

predicts worse in short horizons. The MSE of prediction of 

the random walk model for all contracts is at least as small 

as that of the ARCH-M model in the first five horizons. The 

random walk also predicts better for horizons six through ten 

in three of the five data sets. By looking at the U-
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statistics it is also clear that the random walk is better 

able to predict turning points in the data. This is somewhat 

remarkable because the random walk by definition cannot 

predict turning points. Only in contract 88(3) does the ARCH-

M predict turning points more accurately. Given these results 

the ARCH-M model does not seem appropriate for capturing the 

important nonlinearities of the data. Thus, even though there 

are theoretical reasons to believe that conditional moments 

are important determinants of asset prices6, these results 

should question the extent to which the ARCH model has been 

used in modeling financial data, especially futures data. 

The GARCH-M model performed somewhat better than the 

ARCH-M model, but still not sufficiently well to believe that 

the nonlinearities in the data were completely modeled. In 

two of the five data sets, the GARCH-M model had a smaller MSE 

of prediction than the random walk. When considering all five 

contracts, in twenty-nine of the possible fifty horizons the 

GARCH-M model had a smaller MSE of prediction. In addition, 

the prediction horizon did not appear to be important. 

Depending upon the particular contract, either the random walk 

or the GARCH-M model dominated in every horizon. However, the 

ability of the GARCH-M model to track turning points was much 

worse than that of the random walk. In three of the five data 

sets the random walk had smaller U-statistics. These results 

6 Many intertemporal asset-pricing models give rise to 
Euler equations that involve conditional expectations of 
marginal utilities across time periods, (see Lucas (1978)). 
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should not appear surprising since the ARCH-M model also could 

not outperform the simple linear model. 

The bilinear model appeared to be the best model from all 

of the nonlinear models considered. The random walk, when 

compared to the bilinear model, had lower MSE of predictions 

in only one of the five contracts. The bilinear model was 

also better able to detect turning points. In thirty-one of 

the fifty possible comparisons, the bilinear model had lower 

U-statistics than the random walk. Like the comparison made 

between the GARCH-M model and the random walk, the prediction 

horizon did not appear to be important here either. The 

bilinear model dominated the random walk's performance for 

every horizon and in every contract except 88(12). 

When compared to the random walk, the worst model was the 

stochastic, segmented trends (SST) model. The random walk 

performed better in every contract. The SST model had lower 

MSE1s of prediction in six of the fifty possible cases. Given 

the poor results in the estimation period, these prediction 

results should not be surprising. Regardless of which futures 

contract was modeled, roughly ninety percent of the time the 

SST model estimated the data to come from state two. 

The ability of the SST model to predict turning points 

was somewhat better than its overall performance. For 

contract 88(3), it was able to predict turning points better 

than the random walk in every horizon. Overall, the SST model 

had lower U-statiStics in the earlier horizons. 
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Among just the nonlinear models, the SST model still has 

the largest MSE of prediction. However, if the performance of 

the models are just measured by looking at the MSE in the 

first horizon, then the SST model performs better than both 

the ARCH-M and bilinear models and better than the GARCH-M 

model in two of the five data sets. 

The ARCH-M mpdel performs worse than both the bilinear 

and GARCH-M models, although, for contract 88(12), the ARCH-M 

model has the lowest MSE of prediction out of all the models. 

However, its MSE of prediciton is still not much lower even 

for this contract. 

The GARCH-M and bilinear models have nearly equal MSE of 

predictions. However, there are still some marked differences 

between their performances. GARCH-M outperforms the bilinear 

model in earlier horizons and the bilinear model is clearly 

the better model for horizons 6 through 10. 

Considering just the ability to predict turning points, 

the bilinear model is undoubtedly the best model. However, 

the SST model had the lowest U-statistics when considering 

just the first horizon. GARCH-M is better than the ARCH-M 

model given this criterion, and the ARCH-M model is definitely 

the worst of all models, including the SST model, for all 

horizons. 

Given these two prediction criteria, the bilinear model 

is able to model futures prices better than every nonlinear 
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model considered. Against the random walk, it also performed 

the best. It seems straightforward to conclude then that 

bilinear models are the best for T-bill futures prices,, and 

that the popular family of ARCH models may be somewhat abused 

when used to model financial data. 
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CHAPTER 5 
SUMMARY AND CONCLUSION 

Several important issues relating to the time series 

properties of futures prices have been studied in the previous 

chapters. These include the stationarity of 90-day U.S. 

Treasury Bill futures prices, the validity of the random walk 

hypothesis, the existence of nonlinear dependence, and the 

exploitability of the nonlinear dependence that is found in 

futures prices in terms of prediction. Results in chapter 2 

clearly confirm .that Treasury Bill futures prices are 

nonstationary. In addition, I find that the best random walk 

model is one with neither a drift nor trend term. These 

results confirm the results of other studies of financial 

futures prices and provide a necessary condition for the 

random walk hypothesis to be affirmed. 

It has been shown by using both nonparametric and 

parametric tests of dependence that first differences of 

futures prices contain no significant linear dependence. On 

the other hand, the Brock, Diechert, and Scheinkman test, the 

ARCH specification test, and Tsay's test for nonlinearity, all 

clearly demonstrated that nonlinear dependence is present. 

Thus, the random walk hypothesis cannot be verified. Hseih's 

test to distinguish between additive and multiplicative 

103 
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nonlinear dependence indicates that the data primarily contain 

multiplicative dependence. However, using two predictive 

criteria in chapter 4, I find that the bilinear model is the 

best nonlinear model for the data. Given this result and the 

fact that a bilinear process exhibits additive nonlinear 

dependence, it is not clear that Hseih's test is powerful 

enough to detect the different types of nonlinear dependence 

found in the data. 

As mentioned above, the forecasting performance of the 

bilinear model is better than that of the random walk model 

and the other nonlinear models considered. Time-varying 

parameter models and several versions of Sclove's (1983) time 

series segmentation model were found to be inappropriate for 

these futures prices. The GARCH-M model was the second best, 

the ARCH-M model third best, and Hamilton's (1989) stochastic, 

segmented trends .model worst of all the nonlinear models 

estimated. However, in earlier horizons, Hamilton's model was 

able to predict turning points better than most models. The 

most important results of chapter 4 are that: nonlinear 

dependence can be exploited for predictive purposes; the 

bilinear model is the best model for these futures data; some 

nonlinear models predict better than the random walk; and that 

the ARCH family of models are probably being misused or 

abused. 
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